init unittest
This commit is contained in:
parent
4b55f35662
commit
1c7f0ab519
|
@ -430,7 +430,6 @@ docker run --gpus=all \
|
|||
-v ./hf_cache:/root/.cache/huggingface/ \
|
||||
-v ./data:/app/data \
|
||||
-v ./output:/app/output \
|
||||
-e CUDA_VISIBLE_DEVICES=0 \
|
||||
-p 7860:7860 \
|
||||
--shm-size 16G \
|
||||
--name llama_factory \
|
||||
|
|
|
@ -428,7 +428,6 @@ docker run --gpus=all \
|
|||
-v ./hf_cache:/root/.cache/huggingface/ \
|
||||
-v ./data:/app/data \
|
||||
-v ./output:/app/output \
|
||||
-e CUDA_VISIBLE_DEVICES=0 \
|
||||
-p 7860:7860 \
|
||||
--shm-size 16G \
|
||||
--name llama_factory \
|
||||
|
|
|
@ -10,8 +10,6 @@ services:
|
|||
- ./hf_cache:/root/.cache/huggingface/
|
||||
- ./data:/app/data
|
||||
- ./output:/app/output
|
||||
environment:
|
||||
- CUDA_VISIBLE_DEVICES=0
|
||||
ports:
|
||||
- "7860:7860"
|
||||
ipc: host
|
||||
|
|
|
@ -20,7 +20,7 @@ def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float:
|
|||
|
||||
def main():
|
||||
client = OpenAI(
|
||||
api_key="0",
|
||||
api_key="{}".format(os.environ.get("API_KEY", "0")),
|
||||
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
|
||||
)
|
||||
tools = [
|
|
@ -0,0 +1,35 @@
|
|||
import os
|
||||
|
||||
from transformers.utils import is_flash_attn_2_available, is_torch_sdpa_available
|
||||
|
||||
from llamafactory.hparams import get_infer_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
|
||||
|
||||
def test_attention():
|
||||
attention_available = ["off"]
|
||||
if is_torch_sdpa_available():
|
||||
attention_available.append("sdpa")
|
||||
|
||||
if is_flash_attn_2_available():
|
||||
attention_available.append("fa2")
|
||||
|
||||
llama_attention_classes = {
|
||||
"off": "LlamaAttention",
|
||||
"sdpa": "LlamaSdpaAttention",
|
||||
"fa2": "LlamaFlashAttention2",
|
||||
}
|
||||
for requested_attention in attention_available:
|
||||
model_args, _, finetuning_args, _ = get_infer_args({
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"template": "llama2",
|
||||
"flash_attn": requested_attention,
|
||||
})
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer["tokenizer"], model_args, finetuning_args)
|
||||
for module in model.modules():
|
||||
if "Attention" in module.__class__.__name__:
|
||||
assert module.__class__.__name__ == llama_attention_classes[requested_attention]
|
|
@ -1,30 +0,0 @@
|
|||
import os
|
||||
import time
|
||||
|
||||
from openai import OpenAI
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")
|
||||
|
||||
|
||||
def main():
|
||||
client = OpenAI(
|
||||
api_key="0",
|
||||
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
|
||||
)
|
||||
messages = [{"role": "user", "content": "Write a long essay about environment protection as long as possible."}]
|
||||
num_tokens = 0
|
||||
start_time = time.time()
|
||||
for _ in range(8):
|
||||
result = client.chat.completions.create(messages=messages, model="test")
|
||||
num_tokens += result.usage.completion_tokens
|
||||
|
||||
elapsed_time = time.time() - start_time
|
||||
print("Throughput: {:.2f} tokens/s".format(num_tokens / elapsed_time))
|
||||
# --infer_backend hf: 27.22 tokens/s (1.0x)
|
||||
# --infer_backend vllm: 73.03 tokens/s (2.7x)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue