update readme

This commit is contained in:
hiyouga 2023-08-07 15:02:02 +08:00
parent cacd5b703d
commit 20cf27976f
5 changed files with 39 additions and 30 deletions

View File

@ -41,16 +41,21 @@
[23/05/31] Now we support training the **BLOOM & BLOOMZ** models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` and `--lora_target query_key_value` arguments to use the BLOOMZ model.
## Supported Models
| model | model size | model_name_or_path | lora_target | template |
|-------------------------------------------------------------|-----------------------------|--------------------------------|-------------------|----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - | q_proj,v_proj | default |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | meta-llama/Llama-2-7b-hf | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | bigscience/bloom-7b1 | query_key_value | default |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | bigscience/bloomz-7b1-mt | query_key_value | default |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | tiiuae/falcon-7b | query_key_value | default |
| [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B) | 7B/13B | baichuan-inc/Baichuan-13B-Chat | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | internlm/internlm-7b | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | Qwen/Qwen-7B-Chat | c_attn | chatml |
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- |----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/baichuan-13B) | 7B/13B | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | - |
> * **Default module** is used for the `--lora_target` argument. Please use `python src/train_bash.py -h` to see all available options.
> * For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc.
## Supported Training Approaches

View File

@ -41,16 +41,21 @@
[23/05/31] 现在我们支持了 **BLOOM & BLOOMZ** 模型的训练。请尝试使用 `--model_name_or_path bigscience/bloomz-7b1-mt``--lora_target query_key_value` 参数。
## 模型
| model | model size | model_name_or_path | lora_target | template |
|-------------------------------------------------------------|-----------------------------|--------------------------------|-------------------|----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - | q_proj,v_proj | default |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | meta-llama/Llama-2-7b-hf | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | bigscience/bloom-7b1 | query_key_value | default |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | bigscience/bloomz-7b1-mt | query_key_value | default |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | tiiuae/falcon-7b | query_key_value | default |
| [Baichuan](https://huggingface.co/baichuan-inc/baichuan-7B) | 7B/13B | baichuan-inc/Baichuan-13B-Chat | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | internlm/internlm-7b | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | Qwen/Qwen-7B-Chat | c_attn | chatml |
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- |----------|
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B | query_key_value | - |
| [Baichuan](https://github.com/baichuan-inc/baichuan-13B) | 7B/13B | W_pack | baichuan |
| [InternLM](https://github.com/InternLM/InternLM) | 7B | q_proj,v_proj | intern |
| [Qwen](https://github.com/QwenLM/Qwen-7B) | 7B | c_attn | chatml |
| [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | - |
> * **默认模块**是 `--lora_target` 参数的默认值。请使用 `python src/train_bash.py -h` 查看全部可选项。
> * 对于所有“基座”模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等值。
## 微调方法

View File

@ -30,7 +30,7 @@ class ChatModel:
) -> Tuple[Dict[str, Any], int]:
prefix = prefix or self.source_prefix
prompt, _ = self.template.get_prompt(
prompt, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, query=query, resp="", history=history, prefix=prefix
)
input_ids = torch.tensor([prompt], device=self.model.device)

View File

@ -47,15 +47,14 @@ def preprocess_dataset(
def preprocess_supervised_dataset(examples: Dict[str, List[Any]]) -> Dict[str, Any]:
# build inputs with format `<bos> X Y <eos>` and labels with format `<ignore> ... <ignore> Y <eos>`
# for input with history, we build multiple input-label pairs just like:
# https://github.com/lm-sys/FastChat/blob/f17c092f64840fa6354ed52789dccb2daa793d0b/fastchat/train/train.py#L112
# for multiturn examples, we only mask the prompt part in each prompt-response pair.
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
max_length = data_args.max_source_length + data_args.max_target_length
for query, response, history, prefix in construct_example(examples):
input_ids, labels = [], []
for source_ids, target_ids in template.get_dialog(tokenizer, query, response, history, prefix):
for source_ids, target_ids in template.encode_multiturn(tokenizer, query, response, history, prefix):
if len(source_ids) > data_args.max_source_length:
source_ids = source_ids[:data_args.max_source_length]
if len(target_ids) > data_args.max_target_length:
@ -78,7 +77,7 @@ def preprocess_dataset(
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
for query, response, history, prefix in construct_example(examples):
source_ids, target_ids = template.get_prompt(tokenizer, query, response, history, prefix)
source_ids, target_ids = template.encode_oneturn(tokenizer, query, response, history, prefix)
if len(source_ids) > data_args.max_source_length:
source_ids = source_ids[:data_args.max_source_length]
@ -95,8 +94,8 @@ def preprocess_dataset(
# build input pairs with format `<bos> X Y1 <eos>` and `<bos> X Y2 <eos>`
model_inputs = {"accept_ids": [], "reject_ids": []}
for query, response, history, prefix in construct_example(examples):
source_ids, accept_ids = template.get_prompt(tokenizer, query, response[0], history, prefix)
source_ids, reject_ids = template.get_prompt(tokenizer, query, response[1], history, prefix)
source_ids, accept_ids = template.encode_oneturn(tokenizer, query, response[0], history, prefix)
source_ids, reject_ids = template.encode_oneturn(tokenizer, query, response[1], history, prefix)
if len(source_ids) > data_args.max_source_length:
source_ids = source_ids[:data_args.max_source_length]

View File

@ -14,7 +14,7 @@ class Template:
stop_words: List[str]
use_history: bool
def get_prompt(
def encode_oneturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
@ -33,7 +33,7 @@ class Template:
prompt_ids = prompt_ids + encoded_pairs[-1][0]
return prompt_ids, encoded_pairs[-1][1]
def get_dialog(
def encode_multiturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
@ -73,7 +73,7 @@ class Template:
r"""
Encodes formatted inputs to pairs of token ids.
"""
if tokenizer.bos_token and getattr(tokenizer, "add_bos_token", False): # bos token is optional
if tokenizer.bos_token_id and getattr(tokenizer, "add_bos_token", False): # bos token is optional
bos_token_id = [tokenizer.bos_token_id]
else:
bos_token_id = []