fix eval in webui
This commit is contained in:
parent
510e64ee70
commit
24cc93ab15
|
@ -5,7 +5,7 @@ import signal
|
|||
import time
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from datetime import timedelta
|
||||
from typing import TYPE_CHECKING, Any, Dict
|
||||
from typing import TYPE_CHECKING, Any, Dict, Optional
|
||||
|
||||
import transformers
|
||||
from transformers import TrainerCallback
|
||||
|
@ -38,8 +38,20 @@ class FixValueHeadModelCallback(TrainerCallback):
|
|||
|
||||
class LogCallback(TrainerCallback):
|
||||
def __init__(self, output_dir: str) -> None:
|
||||
r"""
|
||||
Initializes a callback for logging training and evaluation status.
|
||||
"""
|
||||
""" Progress """
|
||||
self.start_time = 0
|
||||
self.cur_steps = 0
|
||||
self.max_steps = 0
|
||||
self.elapsed_time = ""
|
||||
self.remaining_time = ""
|
||||
self.thread_pool: Optional["ThreadPoolExecutor"] = None
|
||||
""" Status """
|
||||
self.aborted = False
|
||||
self.do_train = False
|
||||
""" Web UI """
|
||||
self.webui_mode = bool(int(os.environ.get("LLAMABOARD_ENABLED", "0")))
|
||||
if self.webui_mode:
|
||||
signal.signal(signal.SIGABRT, self._set_abort)
|
||||
|
@ -66,6 +78,19 @@ class LogCallback(TrainerCallback):
|
|||
self.elapsed_time = str(timedelta(seconds=int(elapsed_time)))
|
||||
self.remaining_time = str(timedelta(seconds=int(remaining_time)))
|
||||
|
||||
def _write_log(self, output_dir: str, logs: Dict[str, Any]) -> None:
|
||||
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
|
||||
f.write(json.dumps(logs) + "\n")
|
||||
|
||||
def _create_thread_pool(self, output_dir: str) -> None:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
def _close_thread_pool(self) -> None:
|
||||
if self.thread_pool is not None:
|
||||
self.thread_pool.shutdown(wait=True)
|
||||
self.thread_pool = None
|
||||
|
||||
def on_train_begin(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the beginning of training.
|
||||
|
@ -73,8 +98,7 @@ class LogCallback(TrainerCallback):
|
|||
if args.should_save:
|
||||
self.do_train = True
|
||||
self._reset(max_steps=state.max_steps)
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
self.thread_pool = ThreadPoolExecutor(max_workers=1)
|
||||
self._create_thread_pool(output_dir=args.output_dir)
|
||||
|
||||
if (
|
||||
args.should_save
|
||||
|
@ -84,6 +108,12 @@ class LogCallback(TrainerCallback):
|
|||
logger.warning("Previous trainer log in this folder will be deleted.")
|
||||
os.remove(os.path.join(args.output_dir, TRAINER_LOG))
|
||||
|
||||
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of training.
|
||||
"""
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_substep_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of an substep during gradient accumulation.
|
||||
|
@ -103,31 +133,19 @@ class LogCallback(TrainerCallback):
|
|||
control.should_epoch_stop = True
|
||||
control.should_training_stop = True
|
||||
|
||||
def on_train_end(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
def on_evaluate(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called at the end of training.
|
||||
Event called after an evaluation phase.
|
||||
"""
|
||||
self.thread_pool.shutdown(wait=True)
|
||||
self.thread_pool = None
|
||||
self._close_thread_pool()
|
||||
|
||||
def on_prediction_step(
|
||||
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
|
||||
):
|
||||
def on_predict(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a prediction step.
|
||||
Event called after a successful prediction.
|
||||
"""
|
||||
eval_dataloader = kwargs.pop("eval_dataloader", None)
|
||||
if args.should_save and has_length(eval_dataloader) and not self.do_train:
|
||||
if self.max_steps == 0:
|
||||
self.max_steps = len(eval_dataloader)
|
||||
self._close_thread_pool()
|
||||
|
||||
self._timing(cur_steps=self.cur_steps + 1)
|
||||
|
||||
def _write_log(self, output_dir: str, logs: Dict[str, Any]):
|
||||
with open(os.path.join(output_dir, TRAINER_LOG), "a", encoding="utf-8") as f:
|
||||
f.write(json.dumps(logs) + "\n")
|
||||
|
||||
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs) -> None:
|
||||
def on_log(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after logging the last logs.
|
||||
"""
|
||||
|
@ -158,3 +176,26 @@ class LogCallback(TrainerCallback):
|
|||
|
||||
if self.thread_pool is not None:
|
||||
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||
|
||||
def on_prediction_step(
|
||||
self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs
|
||||
):
|
||||
r"""
|
||||
Event called after a prediction step.
|
||||
"""
|
||||
eval_dataloader = kwargs.pop("eval_dataloader", None)
|
||||
if args.should_save and has_length(eval_dataloader) and not self.do_train:
|
||||
if self.max_steps == 0:
|
||||
self._reset(max_steps=len(eval_dataloader))
|
||||
self._create_thread_pool(output_dir=args.output_dir)
|
||||
|
||||
self._timing(cur_steps=self.cur_steps + 1)
|
||||
if self.cur_steps % 5 == 0 and self.thread_pool is not None:
|
||||
logs = dict(
|
||||
current_steps=self.cur_steps,
|
||||
total_steps=self.max_steps,
|
||||
percentage=round(self.cur_steps / self.max_steps * 100, 2) if self.max_steps != 0 else 100,
|
||||
elapsed_time=self.elapsed_time,
|
||||
remaining_time=self.remaining_time,
|
||||
)
|
||||
self.thread_pool.submit(self._write_log, args.output_dir, logs)
|
||||
|
|
|
@ -17,6 +17,7 @@ from ..extras.constants import (
|
|||
TRAINING_STAGES,
|
||||
DownloadSource,
|
||||
)
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import use_modelscope
|
||||
from ..extras.packages import is_gradio_available
|
||||
|
||||
|
@ -25,6 +26,9 @@ if is_gradio_available():
|
|||
import gradio as gr
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
ADAPTER_NAMES = {WEIGHTS_NAME, SAFETENSORS_WEIGHTS_NAME}
|
||||
DEFAULT_CACHE_DIR = "cache"
|
||||
DEFAULT_CONFIG_DIR = "config"
|
||||
|
@ -128,11 +132,15 @@ def list_adapters(model_name: str, finetuning_type: str) -> "gr.Dropdown":
|
|||
|
||||
|
||||
def load_dataset_info(dataset_dir: str) -> Dict[str, Dict[str, Any]]:
|
||||
if dataset_dir == "ONLINE":
|
||||
logger.info("dataset_dir is ONLINE, using online dataset.")
|
||||
return {}
|
||||
|
||||
try:
|
||||
with open(os.path.join(dataset_dir, DATA_CONFIG), "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
except Exception as err:
|
||||
print("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err)))
|
||||
logger.warning("Cannot open {} due to {}.".format(os.path.join(dataset_dir, DATA_CONFIG), str(err)))
|
||||
return {}
|
||||
|
||||
|
||||
|
|
|
@ -21,16 +21,16 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|||
|
||||
with gr.Row():
|
||||
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
|
||||
dataset = gr.Dropdown(multiselect=True, scale=4)
|
||||
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4)
|
||||
preview_elems = create_preview_box(dataset_dir, dataset)
|
||||
|
||||
input_elems.update({dataset_dir, dataset})
|
||||
elem_dict.update(dict(dataset_dir=dataset_dir, dataset=dataset, **preview_elems))
|
||||
|
||||
with gr.Row():
|
||||
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
|
||||
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=65536, step=1)
|
||||
max_samples = gr.Textbox(value="100000")
|
||||
batch_size = gr.Slider(value=8, minimum=1, maximum=512, step=1)
|
||||
batch_size = gr.Slider(value=2, minimum=1, maximum=1024, step=1)
|
||||
predict = gr.Checkbox(value=True)
|
||||
|
||||
input_elems.update({cutoff_len, max_samples, batch_size, predict})
|
||||
|
@ -48,30 +48,27 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|||
with gr.Row():
|
||||
cmd_preview_btn = gr.Button()
|
||||
start_btn = gr.Button(variant="primary")
|
||||
stop_btn = gr.Button(variant="stop")
|
||||
|
||||
with gr.Row():
|
||||
resume_btn = gr.Checkbox(visible=False, interactive=False)
|
||||
process_bar = gr.Slider(visible=False, interactive=False)
|
||||
progress_bar = gr.Slider(visible=False, interactive=False)
|
||||
|
||||
with gr.Row():
|
||||
output_box = gr.Markdown()
|
||||
|
||||
output_elems = [output_box, process_bar]
|
||||
output_elems = [output_box, progress_bar]
|
||||
elem_dict.update(
|
||||
dict(
|
||||
cmd_preview_btn=cmd_preview_btn,
|
||||
start_btn=start_btn,
|
||||
stop_btn=stop_btn,
|
||||
resume_btn=resume_btn,
|
||||
process_bar=process_bar,
|
||||
progress_bar=progress_bar,
|
||||
output_box=output_box,
|
||||
)
|
||||
)
|
||||
|
||||
cmd_preview_btn.click(engine.runner.preview_eval, input_elems, output_elems, concurrency_limit=None)
|
||||
start_btn.click(engine.runner.run_eval, input_elems, output_elems)
|
||||
stop_btn.click(engine.runner.set_abort)
|
||||
resume_btn.change(engine.runner.monitor, outputs=output_elems, concurrency_limit=None)
|
||||
|
||||
dataset_dir.change(list_dataset, [dataset_dir], [dataset], queue=False)
|
||||
|
|
|
@ -27,7 +27,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|||
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=1
|
||||
)
|
||||
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=1)
|
||||
dataset = gr.Dropdown(multiselect=True, scale=4)
|
||||
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4)
|
||||
preview_elems = create_preview_box(dataset_dir, dataset)
|
||||
|
||||
input_elems.update({training_stage, dataset_dir, dataset})
|
||||
|
@ -52,7 +52,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|||
)
|
||||
|
||||
with gr.Row():
|
||||
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=16384, step=1)
|
||||
cutoff_len = gr.Slider(value=1024, minimum=4, maximum=65536, step=1)
|
||||
batch_size = gr.Slider(value=2, minimum=1, maximum=1024, step=1)
|
||||
gradient_accumulation_steps = gr.Slider(value=8, minimum=1, maximum=1024, step=1)
|
||||
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
|
||||
|
|
|
@ -299,12 +299,12 @@ class Runner:
|
|||
progress_bar: gr.Slider(visible=False),
|
||||
}
|
||||
else:
|
||||
running_log, running_progress, running_loss = get_trainer_info(output_path)
|
||||
running_log, running_progress, running_loss = get_trainer_info(output_path, self.do_train)
|
||||
return_dict = {
|
||||
output_box: running_log,
|
||||
progress_bar: running_progress,
|
||||
}
|
||||
if self.do_train and running_loss is not None:
|
||||
if running_loss is not None:
|
||||
return_dict[loss_viewer] = running_loss
|
||||
|
||||
yield return_dict
|
||||
|
|
|
@ -63,7 +63,7 @@ def get_time() -> str:
|
|||
return datetime.now().strftime(r"%Y-%m-%d-%H-%M-%S")
|
||||
|
||||
|
||||
def get_trainer_info(output_path: os.PathLike) -> Tuple[str, "gr.Slider", Optional["gr.Plot"]]:
|
||||
def get_trainer_info(output_path: os.PathLike, do_train: bool) -> Tuple[str, "gr.Slider", Optional["gr.Plot"]]:
|
||||
running_log = ""
|
||||
running_progress = gr.Slider(visible=False)
|
||||
running_loss = None
|
||||
|
@ -91,7 +91,7 @@ def get_trainer_info(output_path: os.PathLike) -> Tuple[str, "gr.Slider", Option
|
|||
)
|
||||
running_progress = gr.Slider(label=label, value=percentage, visible=True)
|
||||
|
||||
if is_matplotlib_available():
|
||||
if do_train and is_matplotlib_available():
|
||||
running_loss = gr.Plot(gen_loss_plot(trainer_log))
|
||||
|
||||
return running_log, running_progress, running_loss
|
||||
|
|
Loading…
Reference in New Issue