diff --git a/README.md b/README.md index 3d617f47..fc7ff69e 100644 --- a/README.md +++ b/README.md @@ -18,17 +18,17 @@ [23/08/03] Now we support training the **Qwen-7B** model in this repo. Try `--model_name_or_path Qwen/Qwen-7B-Chat` and `--lora_target c_attn` arguments to train the Qwen-7B model. Remember to use `--template chatml` argument when you are using the Qwen-7B-Chat model. -[23/07/31] Now we support dataset streaming. Try `--streaming` and `--max_steps 100` arguments to stream your dataset. +[23/07/31] Now we support **dataset streaming**. Try `--streaming` and `--max_steps 10000` arguments to load your dataset in streaming mode. [23/07/29] We release two instruction-tuned 13B models at Hugging Face. See these Hugging Face Repos ([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft)) for details. [23/07/19] Now we support training the **LLaMA-2** models in this repo. Try `--model_name_or_path meta-llama/Llama-2-7b-hf` argument to use the LLaMA-2 model. Remember to use `--template llama2` argument when you are using the LLaMA-2-chat model. -[23/07/18] Now we develop an all-in-one Web UI for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development. +[23/07/18] Now we develop an **all-in-one Web UI** for training, evaluation and inference. Try `train_web.py` to fine-tune models in your Web browser. Thank [@KanadeSiina](https://github.com/KanadeSiina) and [@codemayq](https://github.com/codemayq) for their efforts in the development. [23/07/11] Now we support training the **Baichuan-13B** model in this repo. Try `--model_name_or_path baichuan-inc/Baichuan-13B-Base` and `--lora_target W_pack` arguments to train the Baichuan-13B model. Remember to use `--template baichuan` argument when you are using the Baichuan-13B-Chat model. -[23/07/09] Now we release [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested. +[23/07/09] Now we release **[FastEdit](https://github.com/hiyouga/FastEdit)**⚡🩹, an easy-to-use package for editing the factual knowledge of large language models efficiently. Please follow [FastEdit](https://github.com/hiyouga/FastEdit) if you are interested. [23/07/07] Now we support training the **InternLM-7B** model in this repo. Try `--model_name_or_path internlm/internlm-7b` argument to use the InternLM model. Remember to use `--template intern` argument when you are using the InternLM-chat model. @@ -72,6 +72,8 @@ | PPO Training | | | ✅ | ✅ | | DPO Training | ✅ | | ✅ | ✅ | +- Use `--quantization_bit 4/8` argument to enable QLoRA. + ## Provided Datasets - For pre-training: @@ -204,8 +206,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --fp16 ``` -Remember to specify `--lora_target W_pack` if you are using Baichuan models. - ### Reward Model Training ```bash @@ -280,12 +280,14 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ ### Distributed Training +#### Use Huggingface Accelerate + ```bash accelerate config # configure the environment accelerate launch src/train_bash.py # arguments (same as above) ``` -
Example configuration for full-tuning with DeepSpeed ZeRO-2 +
Example config.yaml for training with DeepSpeed ZeRO-2 ```yaml compute_environment: LOCAL_MACHINE @@ -313,6 +315,44 @@ use_cpu: false
+#### Use DeepSpeed + +```bash +deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \ + --deepspeed ds_config.json \ + ... # arguments (same as above) +``` + +
Example ds_config.json for training with DeepSpeed ZeRO-2 + +```json +{ + "train_micro_batch_size_per_gpu": "auto", + "gradient_accumulation_steps": "auto", + "gradient_clipping": "auto", + "zero_allow_untested_optimizer": true, + "fp16": { + "enabled": "auto", + "loss_scale": 0, + "initial_scale_power": 16, + "loss_scale_window": 1000, + "hysteresis": 2, + "min_loss_scale": 1 + }, + "zero_optimization": { + "stage": 2, + "allgather_partitions": true, + "allgather_bucket_size": 5e8, + "reduce_scatter": true, + "reduce_bucket_size": 5e8, + "overlap_comm": false, + "contiguous_gradients": true + } +} +``` + +
+ ### Evaluation (BLEU and ROUGE_CHINESE) ```bash diff --git a/README_zh.md b/README_zh.md index 5aa9a7d6..c2f83504 100644 --- a/README_zh.md +++ b/README_zh.md @@ -16,31 +16,31 @@ [23/08/11] 现在我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。详情请参阅[此示例](#dpo-训练)(实验性功能)。 -[23/08/03] 现在我们支持了 **Qwen-7B** 模型的训练。请尝试使用 `--model_name_or_path Qwen/Qwen-7B-Chat` 和 `--lora_target c_attn` 参数。使用 Qwen-7B-Chat 模型请添加 `--template chatml` 参数。 +[23/08/03] 现在我们支持了 **Qwen-7B** 模型的训练。请尝试使用 `--model_name_or_path Qwen/Qwen-7B-Chat` 和 `--lora_target c_attn` 参数。使用 Qwen-7B-Chat 模型时请添加 `--template chatml` 参数。 -[23/07/31] 现在我们支持了训练数据流式加载。请尝试使用 `--streaming` 和 `--max_steps 100` 参数来流式加载数据集。 +[23/07/31] 现在我们支持了**数据流式加载**。请尝试使用 `--streaming` 和 `--max_steps 10000` 参数来流式加载数据集。 [23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/baichuan-13b-sft))。 -[23/07/19] 现在我们支持了 **LLaMA-2** 模型的训练。请尝试使用 `--model_name_or_path meta-llama/Llama-2-7b-hf` 参数。请注意使用 LLaMA-2-chat 模型需要添加 `--template llama2` 参数。 +[23/07/19] 现在我们支持了 **LLaMA-2** 模型的训练。请尝试使用 `--model_name_or_path meta-llama/Llama-2-7b-hf` 参数。使用 LLaMA-2-chat 模型时请添加 `--template llama2` 参数。 -[23/07/18] 我们开发了支持训练和测试的浏览器一键微调界面。请尝试使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力。 +[23/07/18] 我们开发了支持训练和测试的**一体化浏览器界面**。请尝试使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力。 -[23/07/11] 现在我们支持了 **Baichuan-13B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-13B-Base` 和 `--lora_target W_pack` 参数。请注意使用 Baichuan-13B-Chat 模型需要添加 `--template baichuan` 参数。 +[23/07/11] 现在我们支持了 **Baichuan-13B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-13B-Base` 和 `--lora_target W_pack` 参数。使用 Baichuan-13B-Chat 模型时请添加 `--template baichuan` 参数。 -[23/07/09] 我们开源了 [FastEdit](https://github.com/hiyouga/FastEdit)⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。 +[23/07/09] 我们开源了 **[FastEdit](https://github.com/hiyouga/FastEdit)**⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。 -[23/07/07] 现在我们支持了 **InternLM-7B** 模型的训练。请尝试使用 `--model_name_or_path internlm/internlm-7b` 参数。请注意使用 InternLM-chat 模型需要添加 `--template intern` 参数。 +[23/07/07] 现在我们支持了 **InternLM-7B** 模型的训练。请尝试使用 `--model_name_or_path internlm/internlm-7b` 参数。使用 InternLM-chat 模型时请添加 `--template intern` 参数。 [23/07/05] 现在我们支持了 **Falcon-7B/40B** 模型的训练。请尝试使用 `--model_name_or_path tiiuae/falcon-7b` 和 `--lora_target query_key_value` 参数。 [23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Hugging Face 项目](https://huggingface.co/hiyouga/baichuan-7b-sft)。 -[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入任意基于 ChatGPT 的应用中。 +[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。 [23/06/15] 现在我们支持了 **Baichuan-7B** 模型的训练。请尝试使用 `--model_name_or_path baichuan-inc/Baichuan-7B` 和 `--lora_target W_pack` 参数。 -[23/06/03] 现在我们实现了 4 比特的 LoRA 训练(也称 [QLoRA](https://github.com/artidoro/qlora))。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调。 +[23/06/03] 现在我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请尝试使用 `--quantization_bit 4` 参数进行 4 比特量化微调。 [23/05/31] 现在我们支持了 **BLOOM & BLOOMZ** 模型的训练。请尝试使用 `--model_name_or_path bigscience/bloomz-7b1-mt` 和 `--lora_target query_key_value` 参数。 @@ -71,6 +71,8 @@ | PPO 训练 | | | ✅ | ✅ | | DPO 训练 | ✅ | | ✅ | ✅ | +- 使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。 + ## 数据集 - 用于预训练: @@ -203,8 +205,6 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --fp16 ``` -使用 Baichuan 模型时请指定 `--lora_target W_pack` 参数。 - ### 奖励模型训练 ```bash @@ -279,6 +279,8 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ ### 多 GPU 分布式训练 +#### 使用 Huggingface Accelerate + ```bash accelerate config # 首先配置分布式环境 accelerate launch src/train_bash.py # 参数同上 @@ -312,7 +314,43 @@ use_cpu: false
-### 指标评估(BLEU分数和汉语ROUGE分数) +#### 使用 DeepSpeed + +```bash +deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py --deepspeed ds_config.json ... # 参数同上 +``` + +
使用 DeepSpeed ZeRO-2 进行全参数微调的 DeepSpeed 配置示例 + +```json +{ + "train_micro_batch_size_per_gpu": "auto", + "gradient_accumulation_steps": "auto", + "gradient_clipping": "auto", + "zero_allow_untested_optimizer": true, + "fp16": { + "enabled": "auto", + "loss_scale": 0, + "initial_scale_power": 16, + "loss_scale_window": 1000, + "hysteresis": 2, + "min_loss_scale": 1 + }, + "zero_optimization": { + "stage": 2, + "allgather_partitions": true, + "allgather_bucket_size": 5e8, + "reduce_scatter": true, + "reduce_bucket_size": 5e8, + "overlap_comm": false, + "contiguous_gradients": true + } +} +``` + +
+ +### 指标评估(BLEU 分数和汉语 ROUGE 分数) ```bash CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ @@ -329,7 +367,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --predict_with_generate ``` -我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128` 参数。 +我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。 ### 模型预测