update data readme

This commit is contained in:
hiyouga 2023-11-03 00:15:23 +08:00
parent cc8ffa10d8
commit 2b5e33c338
2 changed files with 123 additions and 50 deletions

View File

@ -5,30 +5,103 @@ If you are using a custom dataset, please provide your dataset definition in the
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore below 3 arguments)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)",
"file_name": "the name of the dataset file in the this directory. (required if above are not specified)",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional)",
"subset": "",
"ranking": "whether the examples contains ranked responses or not. (default: false)",
"formatting": "",
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"subset": "the name of the subset. (optional, default: None)",
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
"columns": {
"prompt": "the name of the column in the datasets containing the prompts. (default: instruction)",
"query": "the name of the column in the datasets containing the queries. (default: input)",
"response": "the name of the column in the datasets containing the responses. (default: output)",
"history": "the name of the column in the datasets containing the history of chat. (default: None)"
"prompt": "the column name in the dataset containing the prompts. (default: instruction, for alpaca)",
"query": "the column name in the dataset containing the queries. (default: input, for alpaca)",
"response": "the column name in the dataset containing the responses. (default: output, for alpaca)",
"history": "the column name in the dataset containing the histories. (default: None, for alpaca)",
"messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)",
"role": "the key in the message represents the identity. (default: from, for sharegpt)",
"content": "the key in the message represents the content. (default: value, for sharegpt)"
}
}
```
where the `prompt` and `response` columns should contain non-empty values. The `query` column will be concatenated with the `prompt` column and used as input for the model. The `history` column should contain a list where each element is a string tuple representing a query-response pair.
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
For datasets used in reward modeling or DPO training, the `response` column should be a string list, with the preferred answers appearing first, for example:
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
```json
[
{
"instruction": "user instruction (required)",
"input": "user input (optional)",
"output": "model response (required)",
"history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
}
```
where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model.
The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**.
For the pre-training datasets, only the `prompt` column will be used for training.
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
```json
{
"instruction": "Question",
"input": "",
"instruction": "user instruction",
"input": "user input",
"output": [
"Chosen answer",
"Rejected answer"
"chosen answer",
"rejected answer"
]
}
```
The dataset in sharegpt format should follow the below format:
```json
[
{
"conversations": [
{
"from": "human",
"value": "user instruction"
},
{
"from": "gpt",
"value": "model response"
}
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"messages": "conversations",
"role": "from",
"content": "value"
}
}
```
where the `messages` column should be a list whose length is even, and follow the `u/a/u/a/u/a` order.
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.

View File

@ -2,44 +2,44 @@
```json
"数据集名称": {
"hf_hub_url": "Hugging Face 上的项目地址", // 若指定,则忽略下列三个参数
"script_url": "包含数据加载脚本的本地文件夹名称", // 若指定,则忽略下列两个参数
"file_name": "该目录下数据集文件的名称", // 若上述参数未指定,则此项必需
"file_sha1": "数据集文件的SHA-1哈希值", // 可选,留空不影响训练
"subset": "数据集子集的名称", // 可选默认None
"ranking": "是否为偏好数据集", // 可选默认False
"formatting": "数据集格式", // 可选默认alpaca可以为 alpaca 或 sharegpt
"columns": { // 可选
"prompt": "数据集代表提示词的表头名称", // 默认instructionalpaca 格式)
"query": "数据集代表请求的表头名称", // 默认inputalpaca 格式)
"response": "数据集代表回答的表头名称", // 默认outputalpaca 格式)
"history": "数据集代表历史对话的表头名称", // 默认Nonealpaca 格式)
"messages": "数据集代表消息列表的表头名称", // 默认conversationssharegpt 格式)
"role": "消息中代表发送者身份的键名", // 默认fromsharegpt 格式)
"content": "消息中代表文本内容的键名" // 默认valuesharegpt 格式)
"hf_hub_url": "Hugging Face 上的项目地址(若指定,则忽略下列三个参数)",
"script_url": "包含数据加载脚本的本地文件夹名称(若指定,则忽略下列两个参数)",
"file_name": "该目录下数据集文件的名称(若上述参数未指定,则此项必需)",
"file_sha1": "数据集文件的SHA-1哈希值(可选,留空不影响训练)",
"subset": "数据集子集的名称可选默认None",
"ranking": "是否为偏好数据集可选默认False",
"formatting": "数据集格式可选默认alpaca可以为 alpaca 或 sharegpt",
"columns": {
"prompt": "数据集代表提示词的表头名称默认instruction用于 alpaca 格式)",
"query": "数据集代表请求的表头名称默认input用于 alpaca 格式)",
"response": "数据集代表回答的表头名称默认output用于 alpaca 格式)",
"history": "数据集代表历史对话的表头名称默认None用于 alpaca 格式)",
"messages": "数据集代表消息列表的表头名称默认conversations用于 sharegpt 格式)",
"role": "消息中代表发送者身份的键名默认from用于 sharegpt 格式)",
"content": "消息中代表文本内容的键名默认value用于 sharegpt 格式)"
}
}
```
添加后可通过指定 `--dataset 数据集名称` 参数使用自定义数据集。
该项目目前支持两种格式的数据集alpaca 和 sharegpt其中 alpaca 格式的数据集按照以下方式组织:
该项目目前支持两种格式的数据集:**alpaca****sharegpt**,其中 alpaca 格式的数据集按照以下方式组织:
```json
[
{
"instruction": "用户指令", // 必填
"input": "用户输入", // 选填
"output": "模型回答", // 必填
"history": [ // 选填
["第一轮指令", "第一轮回答"],
["第二轮指令", "第二轮回答"]
"instruction": "用户指令(必填)",
"input": "用户输入(选填)",
"output": "模型回答(必填)",
"history": [
["第一轮指令(选填)", "第一轮回答(选填)"],
["第二轮指令(选填)", "第二轮回答(选填)"]
]
}
]
```
对于上述格式的数据,定义中的 `columns` 应当为:
对于上述格式的数据,`dataset_info.json` 中的 `columns`为:
```json
"数据集名称": {
@ -54,7 +54,7 @@
其中 `prompt``response` 列应当是非空的字符串,分别代表用户指令和模型回答。`query` 列的内容将会和 `prompt` 列拼接作为模型输入。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。每轮的模型回答**均会被用于训练**。
`history` 列是由多个字符串二元组构成的列表,分别代表历史消息中每轮的指令和回答。注意每轮的模型回答**均会被用于训练**。
对于预训练数据集,仅 `prompt` 列中的内容会用于模型训练。
@ -76,23 +76,21 @@
```json
[
{
"conversations": [ // 必填
[
{
"from": "human",
"value": "用户指令"
},
{
"from": "gpt",
"value": "模型回答"
}
] // 长度必须为 2 的倍数且符合 u/a/u/a/u/a 顺序
"conversations": [
{
"from": "human",
"value": "用户指令"
},
{
"from": "gpt",
"value": "模型回答"
}
]
}
]
```
对于上述格式的数据,定义中的 `columns` 应当为:
对于上述格式的数据,`dataset_info.json` 中的 `columns`为:
```json
"数据集名称": {
@ -104,4 +102,6 @@
}
```
其中 `messages` 列必须为偶数长度的列表,且符合 `用户/模型/用户/模型/用户/模型` 的顺序。
预训练数据集和偏好数据集尚不支持 sharegpt 格式。