tiny fix
This commit is contained in:
parent
29c1f31baa
commit
2bf2863a58
|
@ -195,6 +195,12 @@ llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
|||
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### PiSSA Fine-Tuning
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### Mixture-of-Depths Fine-Tuning
|
||||
|
||||
```bash
|
||||
|
@ -211,11 +217,5 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
|||
#### FSDP+QLoRA Fine-Tuning
|
||||
|
||||
```bash
|
||||
bash examples/extras/fsdp_qlora/single_node.sh
|
||||
```
|
||||
|
||||
#### PiSSA Fine-Tuning
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||
bash examples/extras/fsdp_qlora/train.sh
|
||||
```
|
||||
|
|
|
@ -195,6 +195,12 @@ llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
|||
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### PiSSA 微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||
```
|
||||
|
||||
#### 深度混合微调
|
||||
|
||||
```bash
|
||||
|
@ -211,11 +217,5 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
|||
#### FSDP+QLoRA 微调
|
||||
|
||||
```bash
|
||||
bash examples/extras/fsdp_qlora/single_node.sh
|
||||
```
|
||||
|
||||
#### PiSSA 微调
|
||||
|
||||
```bash
|
||||
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
|
||||
bash examples/extras/fsdp_qlora/train.sh
|
||||
```
|
||||
|
|
|
@ -120,7 +120,7 @@ def block_expansion(
|
|||
json.dump(index, f, indent=2, sort_keys=True)
|
||||
print("Model weights saved in {}".format(output_dir))
|
||||
|
||||
print("Fine-tune this model with:")
|
||||
print("- Fine-tune this model with:")
|
||||
print("model_name_or_path: {}".format(output_dir))
|
||||
print("finetuning_type: freeze")
|
||||
print("freeze_trainable_layers: {}".format(num_expand))
|
||||
|
|
|
@ -74,7 +74,7 @@ def quantize_loftq(
|
|||
tokenizer.save_pretrained(output_dir)
|
||||
print("Model weights saved in {}".format(output_dir))
|
||||
|
||||
print("Fine-tune this model with:")
|
||||
print("- Fine-tune this model with:")
|
||||
print("model_name_or_path: {}".format(output_dir))
|
||||
print("adapter_name_or_path: {}".format(loftq_dir))
|
||||
print("finetuning_type: lora")
|
||||
|
|
|
@ -68,11 +68,14 @@ def quantize_pissa(
|
|||
tokenizer.save_pretrained(output_dir)
|
||||
print("Model weights saved in {}".format(output_dir))
|
||||
|
||||
print("Fine-tune this model with:")
|
||||
print("- Fine-tune this model with:")
|
||||
print("model_name_or_path: {}".format(output_dir))
|
||||
print("adapter_name_or_path: {}".format(pissa_dir))
|
||||
print("finetuning_type: lora")
|
||||
print("pissa_init: false")
|
||||
print("pissa_convert: true")
|
||||
print("- and optionally with:")
|
||||
print("quantization_bit: 4")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -56,9 +56,15 @@ INFER_ARGS = {
|
|||
}
|
||||
|
||||
|
||||
def load_reference_model() -> "torch.nn.Module":
|
||||
model = AutoModelForCausalLM.from_pretrained(TINY_LLAMA)
|
||||
return PeftModel.from_pretrained(model, TINY_LLAMA_ADAPTER)
|
||||
def load_reference_model(is_trainable: bool = False) -> "LoraModel":
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
lora_model = PeftModel.from_pretrained(model, TINY_LLAMA_ADAPTER, is_trainable=is_trainable)
|
||||
for param in filter(lambda p: p.requires_grad, lora_model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
return lora_model
|
||||
|
||||
|
||||
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module", diff_keys: Sequence[str] = []):
|
||||
|
@ -148,13 +154,7 @@ def test_lora_train_old_adapters():
|
|||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER, is_trainable=True)
|
||||
for param in filter(lambda p: p.requires_grad, ref_model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
ref_model = load_reference_model(is_trainable=True)
|
||||
compare_model(model, ref_model)
|
||||
|
||||
|
||||
|
@ -165,13 +165,7 @@ def test_lora_train_new_adapters():
|
|||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER, is_trainable=True)
|
||||
for param in filter(lambda p: p.requires_grad, ref_model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
ref_model = load_reference_model(is_trainable=True)
|
||||
compare_model(
|
||||
model, ref_model, diff_keys=["q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"]
|
||||
)
|
||||
|
@ -200,9 +194,5 @@ def test_lora_inference():
|
|||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
|
||||
|
||||
base_model = AutoModelForCausalLM.from_pretrained(
|
||||
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device()
|
||||
)
|
||||
ref_model: "LoraModel" = PeftModel.from_pretrained(base_model, TINY_LLAMA_ADAPTER)
|
||||
ref_model = ref_model.merge_and_unload()
|
||||
ref_model = load_reference_model().merge_and_unload()
|
||||
compare_model(model, ref_model)
|
||||
|
|
Loading…
Reference in New Issue