update docs

This commit is contained in:
hiyouga 2024-05-06 21:47:00 +08:00
parent a34f526f10
commit 34d33e2257
44 changed files with 487 additions and 516 deletions

View File

@ -276,18 +276,19 @@ huggingface-cli login
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.39.3 |
| datasets | 2.14.3 | 2.18.0 |
| accelerate | 0.27.2 | 0.28.0 |
| transformers | 4.37.2 | 4.40.1 |
| datasets | 2.14.3 | 2.19.1 |
| accelerate | 0.27.2 | 0.30.0 |
| peft | 0.9.0 | 0.10.0 |
| trl | 0.8.1 | 0.8.1 |
| trl | 0.8.1 | 0.8.6 |
| Optional | Minimum | Recommend |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.0 |
| flash-attn | 2.3.0 | 2.5.6 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.0 | 0.4.2 |
| flash-attn | 2.3.0 | 2.5.8 |
### Hardware Requirement
@ -305,24 +306,15 @@ huggingface-cli login
## Getting Started
### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
### Dependence Installation
### Installation
```bash
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -e .[metrics]
```
Extra dependencies available: deepspeed, metrics, galore, badam, vllm, bitsandbytes, gptq, awq, aqlm, qwen, modelscope, quality
Extra dependencies available: metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
<details><summary>For Windows users</summary>
@ -336,19 +328,41 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
</details>
### Train with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
### Data Preparation
Please refer to [data/README.md](data/README.md) for checking the details about the format of dataset files. You can either use datasets on HuggingFace / ModelScope hub or load the dataset in local disk.
> [!NOTE]
> Please update `data/dataset_info.json` to use your custom dataset.
### Quickstart
The following 3 commands conduct LoRA fine-tuning, inference and merging for Llama3-8B-Instruct model, respectively.
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
See [examples/README.md](examples/README.md) for advanced usage.
> [!TIP]
> Use `llamafactory-cli help` to show help information.
### Use LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
> [!IMPORTANT]
> LLaMA Board GUI only supports training on a single GPU, please use [CLI](#train-with-command-line-interface) for distributed training.
> LLaMA Board GUI only supports training on a single GPU.
#### Use local environment
```bash
llamafactory-cli webui
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webui
```
> [!TIP]
> To modify the default setting in the LLaMA Board GUI, you can use environment variables, e.g., `export CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False` (use `set` command on Windows OS).
> To modify the default setting in the LLaMA Board GUI, you can use environment variables, e.g., `export GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False` (use `set` command on Windows OS).
<details><summary>For Alibaba Cloud users</summary>
@ -389,21 +403,10 @@ docker compose -f ./docker-compose.yml up -d
</details>
### Train with Command Line Interface
See [examples/README.md](examples/README.md) for usage.
> [!TIP]
> Use `llamafactory-cli train -h` to display arguments description.
### Deploy with OpenAI-style API and vLLM
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--template llama3 \
--infer_backend vllm \
--vllm_enforce_eager
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
### Download from ModelScope Hub

View File

@ -163,7 +163,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
> [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以得更好的效果。
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以得更好的效果。
>
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Instruct/Chat模型请务必使用**对应的模板**。
>
@ -276,18 +276,19 @@ huggingface-cli login
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.39.3 |
| datasets | 2.14.3 | 2.18.0 |
| accelerate | 0.27.2 | 0.28.0 |
| transformers | 4.37.2 | 4.40.1 |
| datasets | 2.14.3 | 2.19.1 |
| accelerate | 0.27.2 | 0.30.0 |
| peft | 0.9.0 | 0.10.0 |
| trl | 0.8.1 | 0.8.1 |
| trl | 0.8.1 | 0.8.6 |
| 可选项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.0 |
| flash-attn | 2.3.0 | 2.5.6 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.0 | 0.4.2 |
| flash-attn | 2.3.0 | 2.5.8 |
### 硬件依赖
@ -305,24 +306,15 @@ huggingface-cli login
## 如何使用
### 数据准备
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
### 安装依赖
### 安装 LLaMA Factory
```bash
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -e .[metrics]
```
可选的额外依赖项:deepspeed、metrics、galore、badam、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality
可选的额外依赖项:metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
<details><summary>Windows 用户指南</summary>
@ -336,19 +328,41 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
</details>
### 利用 LLaMA Board 可视化界面训练(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
### 数据准备
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。你可以使用 HuggingFace / ModelScope 上的数据集或加载本地数据集。
> [!NOTE]
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件。
### 快速开始
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA 微调、推理和合并。
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
高级用法请参考 [examples/README_zh.md](examples/README_zh.md)。
> [!TIP]
> 使用 `llamafactory-cli help` 显示使用帮助。
### 使用 LLaMA Board 可视化界面(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
> [!IMPORTANT]
> LLaMA Board 可视化界面目前仅支持单 GPU 训练,请使用[命令行接口](#利用命令行接口训练)来进行多 GPU 分布式训练。
> LLaMA Board 可视化界面目前仅支持单 GPU 训练。
#### 使用本地环境
```bash
llamafactory-cli webui
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webui
```
> [!TIP]
> 您可以使用环境变量来修改 LLaMA Board 可视化界面的默认设置,例如 `export CUDA_VISIBLE_DEVICES=0 GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False`Windows 系统可使用 `set` 指令)。
> 您可以使用环境变量来修改 LLaMA Board 可视化界面的默认设置,例如 `export GRADIO_SERVER_NAME=0.0.0.0 GRADIO_SERVER_PORT=7860 GRADIO_SHARE=False`Windows 系统可使用 `set` 指令)。
<details><summary>阿里云用户指南</summary>
@ -389,21 +403,10 @@ docker compose -f ./docker-compose.yml up -d
</details>
### 利用命令行接口训练
使用方法请参考 [examples/README_zh.md](examples/README_zh.md)。
> [!TIP]
> 您可以执行 `llamafactory-cli train -h` 来查看参数文档。
### 利用 vLLM 部署 OpenAI API
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--template llama3 \
--infer_backend vllm \
--vllm_enforce_eager
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
### 从魔搭社区下载

View File

@ -1,9 +1,16 @@
We provide diverse examples about fine-tuning LLMs.
```bash
export CUDA_VISIBLE_DEVICES=0
cd examples/lora_single_gpu
llamafactory-cli train llama3_lora_pretrain.yaml # Do continuous pre-training using LoRA
```
```
examples/
├── lora_single_gpu/
│ ├── pretrain.sh: Do continuous pre-training using LoRA
│ ├── `
│ ├── sft.sh: Do supervised fine-tuning using LoRA
│ ├── reward.sh: Do reward modeling using LoRA
│ ├── ppo.sh: Do PPO training using LoRA

View File

@ -10,7 +10,7 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--finetuning_type full \
--use_badam \
--badam_switch_mode descending \
--badam_switch_interval 50 \
--badam_switch_block_every 50 \
--badam_verbose 2 \
--output_dir ../../../saves/LLaMA2-7B/badam/sft \
--overwrite_cache \

View File

@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@ -1,7 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@ -1,12 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template fewshot \
--finetuning_type lora \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4

View File

@ -0,0 +1,2 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3

View File

@ -0,0 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
finetuning_type: lora

View File

@ -0,0 +1,4 @@
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
infer_backend: vllm
vllm_enforce_eager: true

View File

@ -1,8 +0,0 @@
#!/bin/bash
# add `--visual_inputs True` to load MLLM
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora

View File

@ -1,35 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage dpo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/dpo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--val_size 0.1 \
--dpo_ftx 1.0 \
--plot_loss \
--fp16

View File

@ -0,0 +1,39 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
# method
stage: dpo
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
dpo_ftx: 1.0
# dataset
dataset: orca_rlhf
template: llama3
cutoff_len: 1024
max_samples: 1000
val_size: 0.1
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/dpo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# eval
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_steps: 500

View File

@ -0,0 +1,19 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
# method
finetuning_type: lora
# dataset
task: mmlu
split: test
template: fewshot
lang: en
n_shot: 5
# output
save_dir: saves/llama3-8b/lora/eval
# eval
batch_size: 4

View File

@ -0,0 +1,38 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
# method
stage: orpo
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# dataset
dataset: orca_rlhf
template: llama3
cutoff_len: 1024
max_samples: 1000
val_size: 0.1
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/orpo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# eval
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_steps: 500

View File

@ -0,0 +1,38 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
reward_model: saves/llama3-8b/lora/reward
# method
stage: ppo
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# dataset
dataset: identity,alpaca_gpt4_en
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/ppo
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# generate
max_new_tokens: 512
top_k: 0
top_p: 0.9

View File

@ -0,0 +1,24 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
# method
stage: sft
do_predict: true
finetuning_type: lora
# dataset
dataset: identity,alpaca_gpt4_en
template: llama3
cutoff_len: 1024
max_samples: 50
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/predict
overwrite_output_dir: true
# eval
per_device_eval_batch_size: 1
predict_with_generate: true

View File

@ -0,0 +1,37 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
# method
stage: pt
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# dataset
dataset: c4_demo
cutoff_len: 1024
max_samples: 1000
val_size: 0.1
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# eval
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_steps: 500

View File

@ -0,0 +1,38 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
# method
stage: rm
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# dataset
dataset: orca_rlhf
template: llama3
cutoff_len: 1024
max_samples: 1000
val_size: 0.1
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/reward
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# eval
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_steps: 500

View File

@ -0,0 +1,38 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
# method
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# dataset
dataset: identity,alpaca_gpt4_en
template: llama3
cutoff_len: 1024
max_samples: 1000
val_size: 0.1
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# eval
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_steps: 500

View File

@ -0,0 +1,22 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
# method
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# dataset
dataset: identity,alpaca_gpt4_en
template: llama3
cutoff_len: 1024
max_samples: 1000
val_size: 0.1
overwrite_cache: true
preprocessing_num_workers: 16
tokenized_path: saves/llama3-8b/dataset/sft # use `tokenized_path` in config to load data
# output
output_dir: saves/llama3-8b/lora/sft
overwrite_output_dir: true

View File

@ -0,0 +1,39 @@
# model
model_name_or_path: llava-hf/llava-1.5-7b-hf
visual_inputs: true
# method
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
# dataset
dataset: mllm_demo
template: vicuna
cutoff_len: 1024
max_samples: 1000
val_size: 0.1
overwrite_cache: true
preprocessing_num_workers: 16
# output
output_dir: saves/llava1_5-7b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
# train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
fp16: true
# eval
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_steps: 500

View File

@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage orpo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/orpo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage ppo \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset alpaca_gpt4_en \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--reward_model ../../saves/LLaMA2-7B/lora/reward \
--output_dir ../../saves/LLaMA2-7B/lora/ppo \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 512 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 1000 \
--top_k 0 \
--top_p 0.9 \
--max_new_tokens 256 \
--plot_loss \
--fp16

View File

@ -1,19 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage sft \
--do_predict \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft,../../saves/LLaMA2-7B/lora/dpo \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--output_dir ../../saves/LLaMA2-7B/lora/predict \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_eval_batch_size 1 \
--max_samples 20 \
--predict_with_generate

View File

@ -1,19 +0,0 @@
#!/bin/bash
# use `--tokenized_path` in training script to load data
CUDA_VISIBLE_DEVICES= llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--max_samples 3000 \
--tokenized_path ../../saves/datasets/sft

View File

@ -1,31 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage pt \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset c4_demo \
--dataset_dir ../../data \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/pretrain \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 10000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage rm \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--create_new_adapter \
--dataset orca_rlhf \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/reward \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--max_samples 5000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -1,32 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -1,33 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path llava-hf/llava-1.5-7b-hf \
--visual_inputs \
--dataset mllm_demo \
--dataset_dir ../../data \
--template vicuna \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft_mllm \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 100.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -0,0 +1,11 @@
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
template: llama3
# export
export_dir: models/llama3_gptq
export_quantization_bit: 4
export_quantization_dataset: data/c4_demo.json
export_size: 2
export_device: cpu
export_legacy_format: false

View File

@ -0,0 +1,13 @@
# Note: DO NOT use quantized model or quantization_bit when merging lora weights
# model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
adapter_name_or_path: saves/llama3-8b/lora/sft
template: llama3
finetuning_type: lora
# export
export_dir: models/llama3_lora_sft
export_size: 2
export_device: cpu
export_legacy_format: false

View File

@ -1,12 +0,0 @@
#!/bin/bash
# DO NOT use quantized model or quantization_bit when merging lora weights
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--adapter_name_or_path ../../saves/LLaMA2-7B/lora/sft \
--template default \
--finetuning_type lora \
--export_dir ../../models/llama2-7b-sft \
--export_size 2 \
--export_device cpu \
--export_legacy_format False

View File

@ -1,11 +0,0 @@
#!/bin/bash
# NEED TO run `merge.sh` before using this script
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \
--model_name_or_path ../../models/llama2-7b-sft \
--template default \
--export_dir ../../models/llama2-7b-sft-int4 \
--export_quantization_bit 4 \
--export_quantization_dataset ../../data/c4_demo.json \
--export_size 2 \
--export_legacy_format False

View File

@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path TheBloke/Llama-2-7B-AWQ \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -1,31 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--quantization_bit 4 \
--plot_loss \
--fp16

View File

@ -1,30 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \
--stage sft \
--do_train \
--model_name_or_path TheBloke/Llama-2-7B-GPTQ \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16

View File

@ -0,0 +1,27 @@
stage: sft
do_train: true
model_name_or_path: BlackSamorez/Llama-2-7b-AQLM-2Bit-1x16-hf
dataset: alpaca_gpt4_en,glaive_toolcall
dataset_dir: data
template: default
finetuning_type: lora
lora_target: q_proj,v_proj
output_dir: ../../saves/LLaMA2-7B/lora/sft
overwrite_cache: true
overwrite_output_dir: true
cutoff_len: 1024
per_device_train_batch_size: 1
per_device_eval_batch_size: 1
gradient_accumulation_steps: 8
lr_scheduler_type: cosine
logging_steps: 10
save_steps: 100
eval_steps: 100
evaluation_strategy: steps
load_best_model_at_end: true
learning_rate: 5e-5
num_train_epochs: 3.0
max_samples: 3000
val_size: 0.1
plot_loss: true
fp16: true

View File

@ -20,12 +20,12 @@ def get_requires():
extra_require = {
"deepspeed": ["deepspeed>=0.10.0"],
"metrics": ["nltk", "jieba", "rouge-chinese"],
"deepspeed": ["deepspeed>=0.10.0"],
"bitsandbytes": ["bitsandbytes>=0.39.0"],
"vllm": ["vllm>=0.4.0"],
"galore": ["galore-torch"],
"badam": ["badam"],
"vllm": ["vllm>=0.4.0"],
"bitsandbytes": ["bitsandbytes>=0.39.0"],
"gptq": ["optimum>=1.16.0", "auto-gptq>=0.5.0"],
"awq": ["autoawq"],
"aqlm": ["aqlm[gpu]>=1.1.0"],

9
src/webui.py Normal file
View File

@ -0,0 +1,9 @@
from llmtuner.webui.interface import create_ui
def main():
create_ui().queue().launch(server_name="0.0.0.0", server_port=None, share=False)
if __name__ == "__main__":
main()