add code for reading from multi files in one directory

This commit is contained in:
BUAADreamer 2023-06-10 15:53:47 +08:00
parent 2ba5d69c7f
commit 3dd5f9a874
5 changed files with 203 additions and 158 deletions

View File

@ -1,107 +1,116 @@
{
"alpaca_en": {
"hf_hub_url": "tatsu-lab/alpaca"
},
"alpaca_zh": {
"file_name": "alpaca_data_zh_51k.json",
"file_sha1": "e655af3db557a4197f7b0cf92e1986b08fae6311"
},
"alpaca_gpt4_en": {
"file_name": "alpaca_gpt4_data_en.json",
"file_sha1": "647f4ad447bd993e4b6b6223d1be15208bab694a"
},
"alpaca_gpt4_zh": {
"file_name": "alpaca_gpt4_data_zh.json",
"file_sha1": "3eaa3bda364ccdd59925d7448a698256c31ef845"
},
"belle_0.5m": {
"hf_hub_url": "BelleGroup/train_0.5M_CN"
},
"belle_1m": {
"hf_hub_url": "BelleGroup/train_1M_CN"
},
"belle_2m": {
"hf_hub_url": "BelleGroup/train_2M_CN"
},
"belle_dialog": {
"hf_hub_url": "BelleGroup/generated_chat_0.4M"
},
"belle_math": {
"hf_hub_url": "BelleGroup/school_math_0.25M"
},
"belle_multiturn": {
"hf_hub_url": "BelleGroup/multiturn_chat_0.8M"
},
"guanaco": {
"hf_hub_url": "JosephusCheung/GuanacoDataset"
},
"firefly": {
"hf_hub_url": "YeungNLP/firefly-train-1.1M",
"columns": {
"prompt": "input",
"query": "",
"response": "target",
"history": ""
}
},
"codealpaca": {
"hf_hub_url": "sahil2801/CodeAlpaca-20k"
},
"alpaca_cot": {
"hf_hub_url": "QingyiSi/Alpaca-CoT"
},
"webqa": {
"hf_hub_url": "suolyer/webqa",
"columns": {
"prompt": "input",
"query": "",
"response": "output",
"history": ""
}
},
"ultra_chat": {
"script_url": "ultra_chat",
"columns": {
"prompt": "instruction",
"query": "",
"response": "output",
"history": "history"
}
},
"example": {
"script_url": "example_dataset",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
},
"comparison_gpt4_en": {
"file_name": "comparison_gpt4_data_en.json",
"file_sha1": "eeb295ce0ab011c37af52596460c8a57d07ad19f"
},
"comparison_gpt4_zh": {
"file_name": "comparison_gpt4_data_zh.json",
"file_sha1": "b99a41c1c864019d9b0c07dbcd5df0560cf33ce0"
},
"hh_rlhf_en": {
"script_url": "hh_rlhf_en",
"columns": {
"prompt": "instruction",
"query": "",
"response": "output",
"history": "history"
}
},
"wiki_demo": {
"file_name": "wiki_demo.txt",
"file_sha1": "b2288edb05b233e5b35250fd4b308a5fa21fa66d",
"columns": {
"prompt": "text",
"query": "",
"response": "",
"history": ""
}
"alpaca_en": {
"hf_hub_url": "tatsu-lab/alpaca"
},
"alpaca_zh": {
"file_name": "alpaca_data_zh_51k.json",
"file_sha1": "e655af3db557a4197f7b0cf92e1986b08fae6311"
},
"alpaca_gpt4_en": {
"file_name": "alpaca_gpt4_data_en.json",
"file_sha1": "647f4ad447bd993e4b6b6223d1be15208bab694a"
},
"alpaca_gpt4_zh": {
"file_name": "alpaca_gpt4_data_zh.json",
"file_sha1": "3eaa3bda364ccdd59925d7448a698256c31ef845"
},
"belle_0.5m": {
"hf_hub_url": "BelleGroup/train_0.5M_CN"
},
"belle_1m": {
"hf_hub_url": "BelleGroup/train_1M_CN"
},
"belle_2m": {
"hf_hub_url": "BelleGroup/train_2M_CN"
},
"belle_dialog": {
"hf_hub_url": "BelleGroup/generated_chat_0.4M"
},
"belle_math": {
"hf_hub_url": "BelleGroup/school_math_0.25M"
},
"belle_multiturn": {
"hf_hub_url": "BelleGroup/multiturn_chat_0.8M"
},
"guanaco": {
"hf_hub_url": "JosephusCheung/GuanacoDataset"
},
"firefly": {
"hf_hub_url": "YeungNLP/firefly-train-1.1M",
"columns": {
"prompt": "input",
"query": "",
"response": "target",
"history": ""
}
},
"codealpaca": {
"hf_hub_url": "sahil2801/CodeAlpaca-20k"
},
"alpaca_cot": {
"hf_hub_url": "QingyiSi/Alpaca-CoT"
},
"webqa": {
"hf_hub_url": "suolyer/webqa",
"columns": {
"prompt": "input",
"query": "",
"response": "output",
"history": ""
}
},
"ultra_chat": {
"script_url": "ultra_chat",
"columns": {
"prompt": "instruction",
"query": "",
"response": "output",
"history": "history"
}
},
"example": {
"script_url": "example_dataset",
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
"history": "history"
}
},
"comparison_gpt4_en": {
"file_name": "comparison_gpt4_data_en.json",
"file_sha1": "eeb295ce0ab011c37af52596460c8a57d07ad19f"
},
"comparison_gpt4_zh": {
"file_name": "comparison_gpt4_data_zh.json",
"file_sha1": "b99a41c1c864019d9b0c07dbcd5df0560cf33ce0"
},
"hh_rlhf_en": {
"script_url": "hh_rlhf_en",
"columns": {
"prompt": "instruction",
"query": "",
"response": "output",
"history": "history"
}
},
"wiki_demo": {
"file_name": "wiki_demo.txt",
"file_sha1": "b2288edb05b233e5b35250fd4b308a5fa21fa66d",
"columns": {
"prompt": "text",
"query": "",
"response": "",
"history": ""
}
},
"pretrain_data": {
"file_name": "pretrain_data",
"columns": {
"prompt": "content",
"query": "",
"response": "",
"history": ""
}
}
}

View File

@ -0,0 +1,7 @@
[
{
"id": 0,
"title": "拥有自己的航空器",
"content": "想自己驾驶飞机或从事通用航空事业的人,大都想拥有自己的航空器。\"自己的\"意思包括自己购买、自己制造、可供自己使用(租用或借用)等等。\n花自己的钱买一架飞机来开一开国内有些人或企业已实现了这个愿望。现在一架国产超轻型的“蜜蜂”飞机售价在l0万元以下进口的一些单发的双座飞机售价在100万元之内。据估计全国大约有几十万人具有这种购买能力。\n自己造一架飞机来开也是一个好创意。美国的通航飞机中有l5是自制的。有的自制飞机甚至还创造了世界飞行纪录。今天自己造飞机比当年莱特兄弟容易多了。飞机的基本构造已无秘密可言各种飞机部件和材料都不难买到。尤其主要的是技术进步大大改进了配件的性能与此同时配件的重量也下降了很多。莱特兄弟当年使用的12马力汽油发动机比现在30马力的同类产品还重。如果有人有志于此而且具备造飞机的种种条件应该说这个目标也是可以实现的。有两点值得注意一是在莱特兄弟造飞机时没有前人经验全靠自己摸索。现在不同了航空制造已有了上百年的知识和经验可供后人学习和利用。现在如果谁想自己造飞机就不用闭门造车了。制造者本人首先应该去学习和掌握一些必要知识和经验才行。其次在莱特兄弟时代没有国家民航当局他们的航空活动不受法规约束。今天就不一样了所有要升空的航空器必须先接受民航当局的鉴定以保证飞行安全。绝不允许以生命为赌注的任何冒险行为。\n租用飞机也是实现自驾飞机的方式之一。国内也还有另一种形式即参加飞行驾驶学校接受培训当然所交的学费价格是不菲的。预计未来在我国必将出现出各类飞行俱乐部。到那时飞行爱好者可以租用飞机去上天过一把瘾了。"
}
]

View File

@ -0,0 +1,7 @@
[
{
"id": 0,
"title": "大卫·亨利",
"content": "大卫·亨利\n\n大卫·克莱顿·亨利David Clayton Henrie美国演员。近来在迪士尼频道原创电视影集《少年魔法师》Wizards of Waverly Place当中演出贾斯汀·鲁索Justin Russo一角。\n\n大卫·亨利出生在加州Mission Viejo在凤凰城长大。他的胞弟劳伦斯·亨利Lorenzo Henrie也是演员。大卫·亨利就读夏安传统学校。家中是信奉罗马天主教。 \n\n大卫在2007年拍摄少年魔法师期间认识女演员露西·海尔Lucy Hale之后与其交往于2009年分手。\n\n10岁时大卫·亨利和SAG在凤凰城签订了合约并开始走出去试镜。 9岁的时候在沙加缅度进行商业拍摄SAG董事建议大卫·亨利搬到洛杉矶。在10岁那年夏天他和他的家人搬到了好莱坞。他预定他的前2支商业试镜扮演主要角色为汉堡王和桂格燕麦。他初演电视节目为Providence。 \n\n到了13岁大卫有了他的第一次重大突破在福克斯公司的喜剧The Pitts饰演 Petey Pitt一角。大卫下出作品为的Hallmark movie为Monster Maker和琳达布莱儿、乔治甘迺迪共同演出并要求回来Hallmark movie公司。 \n\n在18岁时大卫得到了迪士尼频道原创系列演出机会该节目2007年10月12日首播。大卫2008年参加了迪士尼频道的游戏节目。他是绿色团队的队长隔年为旋风队队长。他在迪士尼原创电影《少年魔法师》之后在《酷爸的疯狂假期》中有饰演一角。\n"
}
]

View File

@ -56,7 +56,6 @@ require_version("accelerate>=0.19.0", "To fix: pip install accelerate>=0.19.0")
require_version("peft>=0.3.0", "To fix: pip install peft>=0.3.0")
require_version("trl>=0.4.1", "To fix: pip install trl>=0.4.1")
logger = get_logger(__name__)
@ -92,10 +91,12 @@ def _init_adapter(
if model_args.checkpoint_dir is not None:
if finetuning_args.finetuning_type != "lora":
assert is_mergeable and len(model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
load_trainable_params(model, model_args.checkpoint_dir[0]) # load model checkpoints for non-peft methods
assert is_mergeable and len(
model_args.checkpoint_dir) == 1, "Only LoRA tuning accepts multiple checkpoints."
load_trainable_params(model, model_args.checkpoint_dir[0]) # load model checkpoints for non-peft methods
else:
assert is_mergeable or len(model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
assert is_mergeable or len(
model_args.checkpoint_dir) == 1, "Quantized model only accepts a single checkpoint."
if finetuning_args.finetuning_type == "lora":
logger.info("Fine-tuning method: LoRA")
@ -105,7 +106,8 @@ def _init_adapter(
assert os.path.exists(os.path.join(model_args.checkpoint_dir[0], CONFIG_NAME)), \
"The given checkpoint is not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead."
if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights
if (is_trainable and model_args.resume_lora_training) or (
not is_mergeable): # continually train on the lora weights
checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
else:
checkpoints_to_merge = model_args.checkpoint_dir
@ -117,10 +119,10 @@ def _init_adapter(
if len(checkpoints_to_merge) > 0:
logger.info("Merged {} model checkpoint(s).".format(len(checkpoints_to_merge)))
if lastest_checkpoint is not None: # resume lora training or quantized inference
if lastest_checkpoint is not None: # resume lora training or quantized inference
model = PeftModel.from_pretrained(model, lastest_checkpoint, is_trainable=is_trainable)
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
if is_trainable and lastest_checkpoint is None: # create new lora weights while training
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
@ -168,7 +170,7 @@ def load_pretrained(
padding_side="left",
**config_kwargs
)
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
tokenizer.pad_token_id = 0 if tokenizer.pad_token_id is None else tokenizer.pad_token_id # set as the <unk> token
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
is_mergeable = True
@ -184,9 +186,11 @@ def load_pretrained(
)
elif model_args.quantization_bit == 4:
require_version("bitsandbytes>=0.39.0", "To fix: pip install bitsandbytes>=0.39.0")
require_version("transformers>=4.30.0.dev0", "To fix: pip install git+https://github.com/huggingface/transformers.git")
require_version("transformers>=4.30.0.dev0",
"To fix: pip install git+https://github.com/huggingface/transformers.git")
require_version("peft>=0.4.0.dev0", "To fix: pip install git+https://github.com/huggingface/peft.git")
require_version("accelerate>=0.20.0.dev0", "To fix: pip install git+https://github.com/huggingface/accelerate.git")
require_version("accelerate>=0.20.0.dev0",
"To fix: pip install git+https://github.com/huggingface/accelerate.git")
config_kwargs["load_in_4bit"] = True
config_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
@ -214,10 +218,10 @@ def load_pretrained(
model = prepare_model_for_training(model) if is_trainable else model
model = _init_adapter(model, model_args, finetuning_args, is_trainable, is_mergeable)
if stage == "rm" or stage == "ppo": # add value head
if stage == "rm" or stage == "ppo": # add value head
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
if stage == "ppo": # load reward model
if stage == "ppo": # load reward model
assert is_trainable, "PPO stage cannot be performed at evaluation."
assert model_args.reward_model is not None, "Reward model is necessary for PPO training."
logger.info("Load reward model from {}".format(model_args.reward_model))
@ -230,8 +234,8 @@ def load_pretrained(
model._is_int8_training_enabled = True
if not is_trainable:
model.requires_grad_(False) # fix all model params
model = model.half() if model_args.quantization_bit is None else model # cast from fp32 to fp16
model.requires_grad_(False) # fix all model params
model = model.half() if model_args.quantization_bit is None else model # cast from fp32 to fp16
print_trainable_params(model)
@ -241,11 +245,11 @@ def load_pretrained(
def prepare_args(
stage: Literal["pt", "sft", "rm", "ppo"]
) -> Tuple[ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments]:
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, FinetuningArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
model_args, data_args, training_args, finetuning_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
model_args, data_args, training_args, finetuning_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args, finetuning_args = parser.parse_args_into_dataclasses()
@ -286,7 +290,7 @@ def prepare_args(
logger.warning("`ddp_find_unused_parameters` needs to be set as False in DDP training.")
training_args.ddp_find_unused_parameters = False
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
training_args.optim = "adamw_torch" if training_args.optim == "adamw_hf" else training_args.optim # suppress warning
if model_args.quantization_bit is not None:
if training_args.fp16:
@ -310,10 +314,9 @@ def prepare_args(
def prepare_infer_args() -> Tuple[ModelArguments, DataTrainingArguments, FinetuningArguments]:
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, FinetuningArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # Provide arguments with a json file.
model_args, data_args, finetuning_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, finetuning_args = parser.parse_args_into_dataclasses()
@ -331,7 +334,6 @@ def prepare_data(
model_args: ModelArguments,
data_args: DataTrainingArguments
) -> Dataset:
def checksum(file_path, hash):
with open(file_path, "rb") as datafile:
binary_data = datafile.read()
@ -340,7 +342,7 @@ def prepare_data(
logger.warning("Checksum failed for {}. It may vary depending on the platform.".format(file_path))
max_samples = data_args.max_samples
all_datasets: List[Dataset] = [] # support multiple datasets
all_datasets: List[Dataset] = [] # support multiple datasets
for dataset_attr in data_args.dataset_list:
@ -361,7 +363,7 @@ def prepare_data(
checksum(data_file, dataset_attr.file_sha1)
else:
logger.warning("Checksum failed: missing SHA-1 hash value in dataset_info.json.")
print(extension)
raw_datasets = load_dataset(
extension if extension in ["csv", "json"] else "text",
data_files=data_file,
@ -383,11 +385,11 @@ def prepare_data(
("query_column", "query"),
("response_column", "response"),
("history_column", "history")
]: # every dataset will have 4 columns same as each other
]: # every dataset will have 4 columns same as each other
if getattr(dataset_attr, column_name) != target_name:
if getattr(dataset_attr, column_name):
dataset = dataset.rename_column(getattr(dataset_attr, column_name), target_name)
else: # None or empty string
else: # None or empty string
dataset = dataset.add_column(target_name, dummy_data)
all_datasets.append(dataset)
@ -406,7 +408,6 @@ def preprocess_data(
training_args: Seq2SeqTrainingArguments,
stage: Literal["pt", "sft", "rm", "ppo"]
) -> Dataset:
column_names = list(dataset.column_names)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
prompt_template = Template(data_args.prompt_template)
@ -429,7 +430,8 @@ def preprocess_data(
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // data_args.max_source_length) * data_args.max_source_length
# split by chunks of max_source_length
result = [concatenated_ids[i: i+data_args.max_source_length] for i in range(0, total_length, data_args.max_source_length)]
result = [concatenated_ids[i: i + data_args.max_source_length] for i in
range(0, total_length, data_args.max_source_length)]
return {
"input_ids": result,
"labels": result.copy()
@ -442,9 +444,9 @@ def preprocess_data(
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 1: # bos token
if len(source_ids) > data_args.max_source_length - 1: # bos token
source_ids = source_ids[:data_args.max_source_length - 1]
if len(target_ids) > data_args.max_target_length - 1: # eos token
if len(target_ids) > data_args.max_target_length - 1: # eos token
target_ids = target_ids[:data_args.max_target_length - 1]
input_ids = source_ids + [tokenizer.bos_token_id] + target_ids + [tokenizer.eos_token_id]
@ -461,9 +463,9 @@ def preprocess_data(
source_ids = tokenizer.encode(text=prompt, add_special_tokens=False)
target_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 1: # bos token
if len(source_ids) > data_args.max_source_length - 1: # bos token
source_ids = source_ids[:data_args.max_source_length - 1]
if len(target_ids) > data_args.max_target_length - 1: # bos token
if len(target_ids) > data_args.max_target_length - 1: # bos token
target_ids = target_ids[:data_args.max_target_length - 1]
input_ids = source_ids + [tokenizer.bos_token_id]
@ -481,11 +483,11 @@ def preprocess_data(
accept_ids = tokenizer.encode(text=answer[0], add_special_tokens=False)
reject_ids = tokenizer.encode(text=answer[1], add_special_tokens=False)
if len(source_ids) > data_args.max_source_length - 1: # bos token
if len(source_ids) > data_args.max_source_length - 1: # bos token
source_ids = source_ids[:data_args.max_source_length - 1]
if len(accept_ids) > data_args.max_target_length - 1: # eos token
if len(accept_ids) > data_args.max_target_length - 1: # eos token
accept_ids = accept_ids[:data_args.max_target_length - 1]
if len(reject_ids) > data_args.max_target_length - 1: # eos token
if len(reject_ids) > data_args.max_target_length - 1: # eos token
reject_ids = reject_ids[:data_args.max_target_length - 1]
accept_ids = source_ids + [tokenizer.bos_token_id] + accept_ids + [tokenizer.eos_token_id]

View File

@ -7,7 +7,6 @@ from dataclasses import asdict, dataclass, field
@dataclass
class DatasetAttr:
load_from: str
dataset_name: Optional[str] = None
file_name: Optional[str] = None
@ -68,7 +67,8 @@ class ModelArguments:
)
checkpoint_dir: Optional[str] = field(
default=None,
metadata={"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."}
metadata={
"help": "Path to the directory(s) containing the delta model checkpoints as well as the configurations."}
)
reward_model: Optional[str] = field(
default=None,
@ -76,7 +76,8 @@ class ModelArguments:
)
resume_lora_training: Optional[bool] = field(
default=True,
metadata={"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
metadata={
"help": "Whether to resume training from the last LoRA weights or create new weights after merging them."}
)
plot_loss: Optional[bool] = field(
default=False,
@ -84,7 +85,7 @@ class ModelArguments:
)
def __post_init__(self):
if self.checkpoint_dir is not None: # support merging multiple lora weights
if self.checkpoint_dir is not None: # support merging multiple lora weights
self.checkpoint_dir = [cd.strip() for cd in self.checkpoint_dir.split(",")]
@ -146,7 +147,7 @@ class DataTrainingArguments:
metadata={"help": "Which template to use for constructing prompts in training and inference."}
)
def __post_init__(self): # support mixing multiple datasets
def __post_init__(self): # support mixing multiple datasets
dataset_names = [ds.strip() for ds in self.dataset.split(",")]
with open(os.path.join(self.dataset_dir, "dataset_info.json"), "r") as f:
dataset_info = json.load(f)
@ -155,25 +156,42 @@ class DataTrainingArguments:
for name in dataset_names:
if name not in dataset_info:
raise ValueError("Undefined dataset {} in dataset_info.json.".format(name))
dataset_attrs = []
dataset_attr = None
if "hf_hub_url" in dataset_info[name]:
dataset_attr = DatasetAttr("hf_hub", dataset_name=dataset_info[name]["hf_hub_url"])
elif "script_url" in dataset_info[name]:
dataset_attr = DatasetAttr("script", dataset_name=dataset_info[name]["script_url"])
else:
elif os.path.isfile(os.path.join(self.dataset_dir, dataset_info[name]["file_name"])):
dataset_attr = DatasetAttr(
"file",
file_name=dataset_info[name]["file_name"],
file_sha1=dataset_info[name]["file_sha1"] if "file_sha1" in dataset_info[name] else None
)
if "columns" in dataset_info[name]:
dataset_attr.prompt_column = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query_column = dataset_info[name]["columns"].get("query", None)
dataset_attr.response_column = dataset_info[name]["columns"].get("response", None)
dataset_attr.history_column = dataset_info[name]["columns"].get("history", None)
self.dataset_list.append(dataset_attr)
else:
# Support Directory
for file_name in os.listdir(os.path.join(self.dataset_dir, dataset_info[name]["file_name"])):
path = os.path.join(dataset_info[name]["file_name"], file_name)
dataset_attrs.append(DatasetAttr(
"file",
file_name=path,
file_sha1=dataset_info[name]["file_sha1"] if "file_sha1" in dataset_info[name] else None
))
if dataset_attr is not None:
if "columns" in dataset_info[name]:
dataset_attr.prompt_column = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query_column = dataset_info[name]["columns"].get("query", None)
dataset_attr.response_column = dataset_info[name]["columns"].get("response", None)
dataset_attr.history_column = dataset_info[name]["columns"].get("history", None)
self.dataset_list.append(dataset_attr)
else:
for i, dataset_attr in enumerate(dataset_attrs):
if "columns" in dataset_info[name]:
dataset_attr.prompt_column = dataset_info[name]["columns"].get("prompt", None)
dataset_attr.query_column = dataset_info[name]["columns"].get("query", None)
dataset_attr.response_column = dataset_info[name]["columns"].get("response", None)
dataset_attr.history_column = dataset_info[name]["columns"].get("history", None)
self.dataset_list.append(dataset_attr)
@dataclass
@ -216,14 +234,16 @@ class FinetuningArguments:
def __post_init__(self):
if isinstance(self.lora_target, str):
self.lora_target = [target.strip() for target in self.lora_target.split(",")] # support custom target modules of LoRA
self.lora_target = [target.strip() for target in
self.lora_target.split(",")] # support custom target modules of LoRA
if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [27-k for k in range(self.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
if self.num_layer_trainable > 0: # fine-tuning the last n layers if num_layer_trainable > 0
trainable_layer_ids = [27 - k for k in range(self.num_layer_trainable)]
else: # fine-tuning the first n layers if num_layer_trainable < 0
trainable_layer_ids = [k for k in range(-self.num_layer_trainable)]
self.trainable_layers = ["layers.{:d}.{}".format(idx, self.name_module_trainable) for idx in trainable_layer_ids]
self.trainable_layers = ["layers.{:d}.{}".format(idx, self.name_module_trainable) for idx in
trainable_layer_ids]
assert self.finetuning_type in ["none", "freeze", "lora", "full"], "Invalid fine-tuning method."