fix #1789
This commit is contained in:
parent
ebee4f6a2a
commit
4571068e1e
|
@ -457,7 +457,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
|||
"loss_scale_window": 1000,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"allgather_partitions": true,
|
||||
|
|
|
@ -457,7 +457,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
|
|||
"loss_scale_window": 1000,
|
||||
"hysteresis": 2,
|
||||
"min_loss_scale": 1
|
||||
},
|
||||
},
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"allgather_partitions": true,
|
||||
|
|
|
@ -3,7 +3,6 @@
|
|||
import os
|
||||
import json
|
||||
import torch
|
||||
import inspect
|
||||
import tiktoken
|
||||
import numpy as np
|
||||
from tqdm import tqdm, trange
|
||||
|
@ -46,16 +45,11 @@ class Evaluator:
|
|||
return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)]
|
||||
|
||||
def eval(self) -> None:
|
||||
if "token" in inspect.signature(cached_file).parameters:
|
||||
kwargs = {"token": self.model_args.hf_hub_token}
|
||||
elif "use_auth_token" in inspect.signature(cached_file).parameters: # for transformers==4.31.0
|
||||
kwargs = {"use_auth_token": self.model_args.hf_hub_token}
|
||||
|
||||
mapping = cached_file(
|
||||
path_or_repo_id = os.path.join(self.eval_args.task_dir, self.eval_args.task),
|
||||
filename="mapping.json",
|
||||
cache_dir=self.model_args.cache_dir,
|
||||
**kwargs
|
||||
token=self.model_args.hf_hub_token
|
||||
)
|
||||
|
||||
with open(mapping, "r", encoding="utf-8") as f:
|
||||
|
|
|
@ -1,17 +1,19 @@
|
|||
import os
|
||||
import json
|
||||
import time
|
||||
from typing import TYPE_CHECKING
|
||||
import torch
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
from datetime import timedelta
|
||||
|
||||
from transformers import PreTrainedModel, TrainerCallback
|
||||
from transformers.modeling_utils import custom_object_save, unwrap_model
|
||||
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
|
||||
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
|
||||
from peft import PeftModel
|
||||
|
||||
from llmtuner.extras.constants import LOG_FILE_NAME
|
||||
from llmtuner.extras.constants import LOG_FILE_NAME, V_HEAD_WEIGHTS_NAME, V_HEAD_SAFE_WEIGHTS_NAME
|
||||
from llmtuner.extras.logging import get_logger
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainingArguments, TrainerState, TrainerControl
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
@ -20,31 +22,66 @@ if TYPE_CHECKING:
|
|||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def _save_model_with_valuehead(
|
||||
def _fix_valuehead_checkpoint(
|
||||
model: "AutoModelForCausalLMWithValueHead",
|
||||
output_dir: str,
|
||||
safe_serialization: bool
|
||||
) -> None:
|
||||
if isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
|
||||
model.pretrained_model.config.save_pretrained(output_dir)
|
||||
if model.pretrained_model.can_generate():
|
||||
model.pretrained_model.generation_config.save_pretrained(output_dir)
|
||||
r"""
|
||||
The model is already unwrapped.
|
||||
|
||||
if getattr(model, "is_peft_model", False):
|
||||
model.pretrained_model.save_pretrained(output_dir, safe_serialization=safe_serialization)
|
||||
elif getattr(model.pretrained_model, "_auto_class", None): # must not a peft model
|
||||
custom_object_save(model.pretrained_model, output_dir, config=model.pretrained_model.config)
|
||||
There are three cases:
|
||||
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
|
||||
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
|
||||
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
|
||||
|
||||
We assume `stage3_gather_16bit_weights_on_model_save=true`.
|
||||
"""
|
||||
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
|
||||
return
|
||||
|
||||
if safe_serialization:
|
||||
from safetensors import safe_open
|
||||
from safetensors.torch import save_file
|
||||
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
|
||||
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
|
||||
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
|
||||
else:
|
||||
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
|
||||
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
|
||||
|
||||
decoder_state_dict = {}
|
||||
v_head_state_dict = {}
|
||||
for name, param in state_dict.items():
|
||||
if name.startswith("v_head."):
|
||||
v_head_state_dict[name] = param
|
||||
else:
|
||||
decoder_state_dict[name.replace("pretrained_model.", "")] = param
|
||||
|
||||
os.remove(path_to_checkpoint)
|
||||
model.pretrained_model.save_pretrained(
|
||||
output_dir,
|
||||
state_dict=decoder_state_dict or None,
|
||||
safe_serialization=safe_serialization
|
||||
)
|
||||
|
||||
if safe_serialization:
|
||||
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
|
||||
else:
|
||||
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
|
||||
|
||||
logger.info("Value head model saved at: {}".format(output_dir))
|
||||
|
||||
|
||||
class SavePeftModelCallback(TrainerCallback):
|
||||
class FixValueHeadModelCallback(TrainerCallback):
|
||||
|
||||
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
|
||||
r"""
|
||||
Event called after a checkpoint save.
|
||||
"""
|
||||
if args.should_save:
|
||||
_save_model_with_valuehead(
|
||||
model=unwrap_model(kwargs.pop("model")),
|
||||
_fix_valuehead_checkpoint(
|
||||
model=kwargs.pop("model"),
|
||||
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
|
||||
safe_serialization=args.save_safetensors
|
||||
)
|
||||
|
@ -54,10 +91,8 @@ class SavePeftModelCallback(TrainerCallback):
|
|||
Event called at the end of training.
|
||||
"""
|
||||
if args.should_save:
|
||||
_save_model_with_valuehead(
|
||||
model=unwrap_model(kwargs.pop("model")),
|
||||
output_dir=args.output_dir,
|
||||
safe_serialization=args.save_safetensors
|
||||
_fix_valuehead_checkpoint(
|
||||
model=kwargs.pop("model"), output_dir=args.output_dir, safe_serialization=args.save_safetensors
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -40,6 +40,10 @@ TRAINING_STAGES = {
|
|||
"Pre-Training": "pt"
|
||||
}
|
||||
|
||||
V_HEAD_WEIGHTS_NAME = "v_head.bin"
|
||||
|
||||
V_HEAD_SAFE_WEIGHTS_NAME = "v_head.safetensors"
|
||||
|
||||
class DownloadSource(str, Enum):
|
||||
DEFAULT = "hf"
|
||||
MODELSCOPE = "ms"
|
||||
|
|
|
@ -3,8 +3,8 @@ import inspect
|
|||
from typing import TYPE_CHECKING, Any, Dict, List
|
||||
from transformers import PreTrainedModel
|
||||
from transformers.utils import cached_file
|
||||
from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
|
||||
|
||||
from llmtuner.extras.constants import V_HEAD_WEIGHTS_NAME, V_HEAD_SAFE_WEIGHTS_NAME
|
||||
from llmtuner.extras.logging import get_logger
|
||||
from llmtuner.extras.misc import get_current_device
|
||||
|
||||
|
@ -103,22 +103,20 @@ def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") ->
|
|||
|
||||
try:
|
||||
from safetensors import safe_open
|
||||
vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs)
|
||||
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
|
||||
with safe_open(vhead_file, framework="pt", device="cpu") as f:
|
||||
return {
|
||||
"v_head.summary.weight": f.get_tensor("v_head.summary.weight"),
|
||||
"v_head.summary.bias": f.get_tensor("v_head.summary.bias")
|
||||
}
|
||||
return {key: f.get_tensor(key) for key in f.keys()}
|
||||
except Exception as err:
|
||||
logger.info("Failed to load {}: {}".format(SAFE_WEIGHTS_NAME, str(err)))
|
||||
logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err)))
|
||||
|
||||
try:
|
||||
vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs)
|
||||
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
|
||||
return torch.load(vhead_file, map_location="cpu")
|
||||
except Exception as err:
|
||||
logger.info("Failed to load {}: {}".format(WEIGHTS_NAME, str(err)))
|
||||
logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err)))
|
||||
|
||||
logger.warning("Provided path ({}) does not contain valuehead weights.".format(path_or_repo_id))
|
||||
logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id))
|
||||
logger.info("Ignore these messages if you are not resuming the training of a value head model.")
|
||||
return None
|
||||
|
||||
|
||||
|
|
|
@ -8,11 +8,12 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
|
|||
from transformers import GenerationConfig, Trainer, TrainerState, TrainerControl
|
||||
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
|
||||
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
||||
from transformers.trainer_pt_utils import remove_dummy_checkpoint
|
||||
|
||||
from trl import PPOTrainer
|
||||
from trl.core import PPODecorators, logprobs_from_logits
|
||||
|
||||
from llmtuner.extras.callbacks import LogCallback, SavePeftModelCallback
|
||||
from llmtuner.extras.callbacks import LogCallback, FixValueHeadModelCallback
|
||||
from llmtuner.extras.logging import get_logger
|
||||
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor
|
||||
from llmtuner.train.ppo.utils import dump_layernorm, get_rewards_from_server, restore_layernorm, replace_model
|
||||
|
@ -60,7 +61,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
self.accelerator.state, "deepspeed_plugin"
|
||||
)
|
||||
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
|
||||
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, SavePeftModelCallback)
|
||||
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
|
||||
|
||||
if self.args.max_steps > 0:
|
||||
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
||||
|
@ -369,9 +370,5 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
" use zero_to_fp32.py to recover weights"
|
||||
)
|
||||
self._save(output_dir, state_dict={})
|
||||
for filename in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME]: # remove dummy checkpoint
|
||||
file = os.path.join(output_dir, filename)
|
||||
if os.path.isfile(file):
|
||||
os.remove(file)
|
||||
|
||||
self.model.save_checkpoint(output_dir) # wrapped model
|
||||
remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
|
||||
self.model.save_checkpoint(output_dir)
|
||||
|
|
|
@ -8,7 +8,7 @@ from transformers import DataCollatorWithPadding
|
|||
from transformers.optimization import get_scheduler
|
||||
|
||||
from llmtuner.data import get_dataset, preprocess_dataset
|
||||
from llmtuner.extras.callbacks import SavePeftModelCallback
|
||||
from llmtuner.extras.callbacks import FixValueHeadModelCallback
|
||||
from llmtuner.extras.ploting import plot_loss
|
||||
from llmtuner.model import load_model_and_tokenizer
|
||||
from llmtuner.train.utils import create_ref_model, create_reward_model
|
||||
|
@ -79,7 +79,7 @@ def run_ppo(
|
|||
training_args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
generating_args=generating_args,
|
||||
callbacks=callbacks + [SavePeftModelCallback()],
|
||||
callbacks=callbacks + [FixValueHeadModelCallback()],
|
||||
reward_model=reward_model,
|
||||
config=ppo_config,
|
||||
model=model,
|
||||
|
|
|
@ -4,7 +4,7 @@ from typing import TYPE_CHECKING, Optional, List
|
|||
from transformers import Seq2SeqTrainingArguments
|
||||
|
||||
from llmtuner.data import get_dataset, preprocess_dataset, split_dataset
|
||||
from llmtuner.extras.callbacks import SavePeftModelCallback
|
||||
from llmtuner.extras.callbacks import FixValueHeadModelCallback
|
||||
from llmtuner.extras.ploting import plot_loss
|
||||
from llmtuner.model import load_model_and_tokenizer
|
||||
from llmtuner.train.rm.collator import PairwiseDataCollatorWithPadding
|
||||
|
@ -40,7 +40,7 @@ def run_rm(
|
|||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks + [SavePeftModelCallback()],
|
||||
callbacks=callbacks + [FixValueHeadModelCallback()],
|
||||
compute_metrics=compute_accuracy,
|
||||
**split_dataset(dataset, data_args, training_args)
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue