This commit is contained in:
hiyouga 2024-01-09 18:31:27 +08:00
parent ebee4f6a2a
commit 4571068e1e
9 changed files with 78 additions and 50 deletions

View File

@ -457,7 +457,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,

View File

@ -457,7 +457,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,

View File

@ -3,7 +3,6 @@
import os
import json
import torch
import inspect
import tiktoken
import numpy as np
from tqdm import tqdm, trange
@ -46,16 +45,11 @@ class Evaluator:
return [chr(ord("A") + offset.item()) for offset in torch.argmax(choice_probs, dim=-1)]
def eval(self) -> None:
if "token" in inspect.signature(cached_file).parameters:
kwargs = {"token": self.model_args.hf_hub_token}
elif "use_auth_token" in inspect.signature(cached_file).parameters: # for transformers==4.31.0
kwargs = {"use_auth_token": self.model_args.hf_hub_token}
mapping = cached_file(
path_or_repo_id = os.path.join(self.eval_args.task_dir, self.eval_args.task),
filename="mapping.json",
cache_dir=self.model_args.cache_dir,
**kwargs
token=self.model_args.hf_hub_token
)
with open(mapping, "r", encoding="utf-8") as f:

View File

@ -1,17 +1,19 @@
import os
import json
import time
from typing import TYPE_CHECKING
import torch
from typing import TYPE_CHECKING, Dict
from datetime import timedelta
from transformers import PreTrainedModel, TrainerCallback
from transformers.modeling_utils import custom_object_save, unwrap_model
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers.trainer_utils import has_length, PREFIX_CHECKPOINT_DIR
from peft import PeftModel
from llmtuner.extras.constants import LOG_FILE_NAME
from llmtuner.extras.constants import LOG_FILE_NAME, V_HEAD_WEIGHTS_NAME, V_HEAD_SAFE_WEIGHTS_NAME
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from transformers import TrainingArguments, TrainerState, TrainerControl
from trl import AutoModelForCausalLMWithValueHead
@ -20,31 +22,66 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _save_model_with_valuehead(
def _fix_valuehead_checkpoint(
model: "AutoModelForCausalLMWithValueHead",
output_dir: str,
safe_serialization: bool
) -> None:
if isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
model.pretrained_model.config.save_pretrained(output_dir)
if model.pretrained_model.can_generate():
model.pretrained_model.generation_config.save_pretrained(output_dir)
r"""
The model is already unwrapped.
if getattr(model, "is_peft_model", False):
model.pretrained_model.save_pretrained(output_dir, safe_serialization=safe_serialization)
elif getattr(model.pretrained_model, "_auto_class", None): # must not a peft model
custom_object_save(model.pretrained_model, output_dir, config=model.pretrained_model.config)
There are three cases:
1. full tuning without ds_zero3: state_dict = {"model.layers.*": ..., "v_head.summary.*": ...}
2. lora tuning without ds_zero3: state_dict = {"v_head.summary.*": ...}
3. under deepspeed zero3: state_dict = {"pretrained_model.model.layers.*": ..., "v_head.summary.*": ...}
We assume `stage3_gather_16bit_weights_on_model_save=true`.
"""
if not isinstance(model.pretrained_model, (PreTrainedModel, PeftModel)):
return
if safe_serialization:
from safetensors import safe_open
from safetensors.torch import save_file
path_to_checkpoint = os.path.join(output_dir, SAFE_WEIGHTS_NAME)
with safe_open(path_to_checkpoint, framework="pt", device="cpu") as f:
state_dict: Dict[str, torch.Tensor] = {key: f.get_tensor(key) for key in f.keys()}
else:
path_to_checkpoint = os.path.join(output_dir, WEIGHTS_NAME)
state_dict: Dict[str, torch.Tensor] = torch.load(path_to_checkpoint, map_location="cpu")
decoder_state_dict = {}
v_head_state_dict = {}
for name, param in state_dict.items():
if name.startswith("v_head."):
v_head_state_dict[name] = param
else:
decoder_state_dict[name.replace("pretrained_model.", "")] = param
os.remove(path_to_checkpoint)
model.pretrained_model.save_pretrained(
output_dir,
state_dict=decoder_state_dict or None,
safe_serialization=safe_serialization
)
if safe_serialization:
save_file(v_head_state_dict, os.path.join(output_dir, V_HEAD_SAFE_WEIGHTS_NAME), metadata={"format": "pt"})
else:
torch.save(v_head_state_dict, os.path.join(output_dir, V_HEAD_WEIGHTS_NAME))
logger.info("Value head model saved at: {}".format(output_dir))
class SavePeftModelCallback(TrainerCallback):
class FixValueHeadModelCallback(TrainerCallback):
def on_save(self, args: "TrainingArguments", state: "TrainerState", control: "TrainerControl", **kwargs):
r"""
Event called after a checkpoint save.
"""
if args.should_save:
_save_model_with_valuehead(
model=unwrap_model(kwargs.pop("model")),
_fix_valuehead_checkpoint(
model=kwargs.pop("model"),
output_dir=os.path.join(args.output_dir, "{}-{}".format(PREFIX_CHECKPOINT_DIR, state.global_step)),
safe_serialization=args.save_safetensors
)
@ -54,10 +91,8 @@ class SavePeftModelCallback(TrainerCallback):
Event called at the end of training.
"""
if args.should_save:
_save_model_with_valuehead(
model=unwrap_model(kwargs.pop("model")),
output_dir=args.output_dir,
safe_serialization=args.save_safetensors
_fix_valuehead_checkpoint(
model=kwargs.pop("model"), output_dir=args.output_dir, safe_serialization=args.save_safetensors
)

View File

@ -40,6 +40,10 @@ TRAINING_STAGES = {
"Pre-Training": "pt"
}
V_HEAD_WEIGHTS_NAME = "v_head.bin"
V_HEAD_SAFE_WEIGHTS_NAME = "v_head.safetensors"
class DownloadSource(str, Enum):
DEFAULT = "hf"
MODELSCOPE = "ms"

View File

@ -3,8 +3,8 @@ import inspect
from typing import TYPE_CHECKING, Any, Dict, List
from transformers import PreTrainedModel
from transformers.utils import cached_file
from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from llmtuner.extras.constants import V_HEAD_WEIGHTS_NAME, V_HEAD_SAFE_WEIGHTS_NAME
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import get_current_device
@ -103,22 +103,20 @@ def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") ->
try:
from safetensors import safe_open
vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs)
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
with safe_open(vhead_file, framework="pt", device="cpu") as f:
return {
"v_head.summary.weight": f.get_tensor("v_head.summary.weight"),
"v_head.summary.bias": f.get_tensor("v_head.summary.bias")
}
return {key: f.get_tensor(key) for key in f.keys()}
except Exception as err:
logger.info("Failed to load {}: {}".format(SAFE_WEIGHTS_NAME, str(err)))
logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err)))
try:
vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs)
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
return torch.load(vhead_file, map_location="cpu")
except Exception as err:
logger.info("Failed to load {}: {}".format(WEIGHTS_NAME, str(err)))
logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err)))
logger.warning("Provided path ({}) does not contain valuehead weights.".format(path_or_repo_id))
logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id))
logger.info("Ignore these messages if you are not resuming the training of a value head model.")
return None

View File

@ -8,11 +8,12 @@ from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from transformers import GenerationConfig, Trainer, TrainerState, TrainerControl
from transformers.utils import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from transformers.trainer_pt_utils import remove_dummy_checkpoint
from trl import PPOTrainer
from trl.core import PPODecorators, logprobs_from_logits
from llmtuner.extras.callbacks import LogCallback, SavePeftModelCallback
from llmtuner.extras.callbacks import LogCallback, FixValueHeadModelCallback
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import AverageMeter, count_parameters, get_logits_processor
from llmtuner.train.ppo.utils import dump_layernorm, get_rewards_from_server, restore_layernorm, replace_model
@ -60,7 +61,7 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.accelerator.state, "deepspeed_plugin"
)
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, SavePeftModelCallback)
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
if self.args.max_steps > 0:
logger.info("max_steps is given, it will override any value given in num_train_epochs")
@ -369,9 +370,5 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
" use zero_to_fp32.py to recover weights"
)
self._save(output_dir, state_dict={})
for filename in [WEIGHTS_NAME, SAFE_WEIGHTS_NAME]: # remove dummy checkpoint
file = os.path.join(output_dir, filename)
if os.path.isfile(file):
os.remove(file)
self.model.save_checkpoint(output_dir) # wrapped model
remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
self.model.save_checkpoint(output_dir)

View File

@ -8,7 +8,7 @@ from transformers import DataCollatorWithPadding
from transformers.optimization import get_scheduler
from llmtuner.data import get_dataset, preprocess_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback
from llmtuner.extras.callbacks import FixValueHeadModelCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.model import load_model_and_tokenizer
from llmtuner.train.utils import create_ref_model, create_reward_model
@ -79,7 +79,7 @@ def run_ppo(
training_args=training_args,
finetuning_args=finetuning_args,
generating_args=generating_args,
callbacks=callbacks + [SavePeftModelCallback()],
callbacks=callbacks + [FixValueHeadModelCallback()],
reward_model=reward_model,
config=ppo_config,
model=model,

View File

@ -4,7 +4,7 @@ from typing import TYPE_CHECKING, Optional, List
from transformers import Seq2SeqTrainingArguments
from llmtuner.data import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.callbacks import SavePeftModelCallback
from llmtuner.extras.callbacks import FixValueHeadModelCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.model import load_model_and_tokenizer
from llmtuner.train.rm.collator import PairwiseDataCollatorWithPadding
@ -40,7 +40,7 @@ def run_rm(
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks + [SavePeftModelCallback()],
callbacks=callbacks + [FixValueHeadModelCallback()],
compute_metrics=compute_accuracy,
**split_dataset(dataset, data_args, training_args)
)