add multimodal LLM BLIP-2 and InstructBLIP
This commit is contained in:
parent
5722ada12b
commit
4dcb11eab7
|
@ -340,7 +340,7 @@
|
|||
"history": "history"
|
||||
}
|
||||
},
|
||||
"orca_dpo_de" : {
|
||||
"orca_dpo_de": {
|
||||
"hf_hub_url": "mayflowergmbh/intel_orca_dpo_pairs_de",
|
||||
"ranking": true
|
||||
},
|
||||
|
@ -413,5 +413,10 @@
|
|||
"prompt": "content"
|
||||
},
|
||||
"folder": "python"
|
||||
},
|
||||
"llava_instruct_100": {
|
||||
"file_name": "llava_instruct_100.json",
|
||||
"file_sha1": "96fa18313544e22444fe20eead7754b17da452ae",
|
||||
"ranking": true
|
||||
}
|
||||
}
|
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,34 @@
|
|||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft_mm \
|
||||
--do_train \
|
||||
--model_name_or_path /home/LAB/fengzc/LLM/checkpoints/Salesforce/blip2-opt-2.7b \
|
||||
--dataset llava_instruct_100 \
|
||||
--dataset_dir data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,k_proj \
|
||||
--output_dir saves/blip2-opt-2.7b/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--quantization_bit 8 \
|
||||
--image_path /home/LAB/fengzc/LLM/checkpoints/liuhaotian/LLaVA-Instruct-150K/images/coco/train2017
|
||||
|
|
@ -0,0 +1,35 @@
|
|||
#!/bin/bash
|
||||
|
||||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft_mm \
|
||||
--do_train \
|
||||
--model_name_or_path /home/LAB/fengzc/LLM/checkpoints/Salesforce/instructblip-vicuna-7b \
|
||||
--dataset llava_instruct_100 \
|
||||
--dataset_dir data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,k_proj \
|
||||
--output_dir saves/instructblip-vicuna-7b/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 1 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--warmup_steps 20 \
|
||||
--save_steps 100 \
|
||||
--eval_steps 100 \
|
||||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--quantization_bit 8 \
|
||||
--image_path /home/LAB/fengzc/LLM/checkpoints/liuhaotian/LLaVA-Instruct-150K/images/coco/train2017 \
|
||||
--use_qformer
|
||||
|
|
@ -1,12 +1,12 @@
|
|||
from .collator import PairwiseDataCollatorWithPadding
|
||||
from .loader import get_dataset
|
||||
from .loader import get_dataset, get_mm_dataset
|
||||
from .template import Template, get_template_and_fix_tokenizer, templates
|
||||
from .utils import Role, split_dataset
|
||||
|
||||
|
||||
__all__ = [
|
||||
"PairwiseDataCollatorWithPadding",
|
||||
"get_dataset",
|
||||
"get_mm_dataset",
|
||||
"Template",
|
||||
"get_template_and_fix_tokenizer",
|
||||
"templates",
|
||||
|
|
|
@ -13,23 +13,21 @@ from .preprocess import get_preprocess_and_print_func
|
|||
from .template import get_template_and_fix_tokenizer
|
||||
from .utils import checksum, merge_dataset
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from datasets import Dataset, IterableDataset
|
||||
from transformers import Seq2SeqTrainingArguments
|
||||
from transformers import Seq2SeqTrainingArguments, AutoProcessor
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
from ..hparams import DataArguments, ModelArguments
|
||||
from .parser import DatasetAttr
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def load_single_dataset(
|
||||
dataset_attr: "DatasetAttr",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
dataset_attr: "DatasetAttr",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
logger.info("Loading dataset {}...".format(dataset_attr))
|
||||
data_path, data_name, data_dir, data_files = None, None, None, None
|
||||
|
@ -115,11 +113,11 @@ def load_single_dataset(
|
|||
|
||||
|
||||
def get_dataset(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
||||
if data_args.train_on_prompt and template.efficient_eos:
|
||||
|
@ -177,3 +175,33 @@ def get_dataset(
|
|||
raise RuntimeError("Cannot find valid samples, check `data/README.md` for the data format.")
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def get_mm_dataset(
|
||||
processor: "AutoProcessor",
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
stage: Literal["pt", "sft", "rm", "ppo"],
|
||||
) -> Union["Dataset", "IterableDataset"]:
|
||||
tokenizer = processor.tokenizer
|
||||
if data_args.tokenized_path is not None:
|
||||
if has_tokenized_data(data_args.tokenized_path):
|
||||
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||
dataset = load_from_disk(data_args.tokenized_path)
|
||||
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path))
|
||||
if data_args.streaming:
|
||||
dataset = dataset.to_iterable_dataset()
|
||||
return dataset
|
||||
|
||||
if data_args.streaming:
|
||||
raise ValueError("Turn off `streaming` when saving dataset to disk.")
|
||||
|
||||
with training_args.main_process_first(desc="load dataset"):
|
||||
all_datasets = []
|
||||
for dataset_attr in get_dataset_list(data_args):
|
||||
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
|
||||
all_datasets.append(load_dataset("json", data_files=local_path)['train'])
|
||||
dataset = merge_dataset(all_datasets, data_args, training_args)
|
||||
|
||||
return dataset
|
||||
|
|
|
@ -88,6 +88,10 @@ class DataArguments:
|
|||
default=None,
|
||||
metadata={"help": "Path to save or load the tokenized datasets."},
|
||||
)
|
||||
image_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to images."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.reserved_label_len >= self.cutoff_len:
|
||||
|
|
|
@ -260,7 +260,7 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
|||
default=False,
|
||||
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
|
||||
)
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "orpo"] = field(
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "orpo", "sft_mm"] = field(
|
||||
default="sft",
|
||||
metadata={"help": "Which stage will be performed in training."},
|
||||
)
|
||||
|
|
|
@ -165,6 +165,10 @@ class ModelArguments:
|
|||
default=False,
|
||||
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
|
||||
)
|
||||
use_qformer: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether use qformer for Multimodal LLM."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
self.compute_dtype = None
|
||||
|
|
|
@ -1,10 +1,11 @@
|
|||
from .loader import load_model, load_tokenizer
|
||||
from .loader import load_model, load_tokenizer, load_processor, load_mm_model
|
||||
from .utils import find_all_linear_modules, load_valuehead_params
|
||||
|
||||
|
||||
__all__ = [
|
||||
"load_model",
|
||||
"load_mm_model",
|
||||
"load_tokenizer",
|
||||
"load_processor",
|
||||
"load_valuehead_params",
|
||||
"find_all_linear_modules",
|
||||
]
|
||||
|
|
|
@ -1,24 +1,25 @@
|
|||
from typing import TYPE_CHECKING
|
||||
from typing import TYPE_CHECKING, Union
|
||||
|
||||
import torch
|
||||
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
|
||||
from transformers import AutoModelForVision2Seq
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
|
||||
from ..extras.logging import get_logger
|
||||
from .utils import QuantizationMethod, find_all_linear_modules, find_expanded_modules
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.modeling_utils import PreTrainedModel, AutoModelForVision2Seq
|
||||
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def init_adapter(
|
||||
model: "PreTrainedModel", model_args: "ModelArguments", finetuning_args: "FinetuningArguments", is_trainable: bool
|
||||
model: "PreTrainedModel", model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Initializes the adapters.
|
||||
|
@ -43,9 +44,9 @@ def init_adapter(
|
|||
if finetuning_args.finetuning_type == "freeze" and is_trainable:
|
||||
logger.info("Fine-tuning method: Freeze")
|
||||
num_layers = (
|
||||
getattr(model.config, "num_hidden_layers", None)
|
||||
or getattr(model.config, "num_layers", None)
|
||||
or getattr(model.config, "n_layer", None)
|
||||
getattr(model.config, "num_hidden_layers", None)
|
||||
or getattr(model.config, "num_layers", None)
|
||||
or getattr(model.config, "n_layer", None)
|
||||
)
|
||||
if not num_layers:
|
||||
raise ValueError("Current model does not support freeze tuning.")
|
||||
|
@ -135,9 +136,9 @@ def init_adapter(
|
|||
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
|
||||
|
||||
if (
|
||||
finetuning_args.use_dora
|
||||
and getattr(model, "quantization_method", None) is not None
|
||||
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
|
||||
finetuning_args.use_dora
|
||||
and getattr(model, "quantization_method", None) is not None
|
||||
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
|
||||
):
|
||||
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
|
||||
|
||||
|
@ -176,3 +177,94 @@ def init_adapter(
|
|||
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def init_mm_adapter(
|
||||
model: "AutoModelForVision2Seq", model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool
|
||||
) -> "AutoModelForVision2Seq":
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
|
||||
adapter_to_resume = None
|
||||
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
is_mergeable = True
|
||||
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
|
||||
is_mergeable = False
|
||||
|
||||
if is_deepspeed_zero3_enabled():
|
||||
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
|
||||
is_mergeable = False
|
||||
|
||||
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
|
||||
adapter_to_merge = model_args.adapter_name_or_path[:-1]
|
||||
adapter_to_resume = model_args.adapter_name_or_path[-1]
|
||||
else:
|
||||
adapter_to_merge = model_args.adapter_name_or_path
|
||||
|
||||
for adapter in adapter_to_merge:
|
||||
model: "LoraModel" = PeftModel.from_pretrained(
|
||||
model, adapter, offload_folder=model_args.offload_folder
|
||||
)
|
||||
model = model.merge_and_unload()
|
||||
|
||||
if len(adapter_to_merge) > 0:
|
||||
logger.info("Merged {} adapter(s).".format(len(adapter_to_merge)))
|
||||
|
||||
if adapter_to_resume is not None: # resume lora training
|
||||
model = PeftModel.from_pretrained(
|
||||
model, adapter_to_resume, is_trainable=is_trainable, offload_folder=model_args.offload_folder
|
||||
)
|
||||
|
||||
if is_trainable and adapter_to_resume is None: # create new lora weights while training
|
||||
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
|
||||
target_modules = find_all_linear_modules(model)
|
||||
else:
|
||||
target_modules = finetuning_args.lora_target
|
||||
|
||||
if finetuning_args.use_llama_pro:
|
||||
target_modules = find_expanded_modules(model, target_modules, finetuning_args.num_layer_trainable)
|
||||
|
||||
if (
|
||||
finetuning_args.use_dora
|
||||
and getattr(model, "quantization_method", None) is not None
|
||||
and getattr(model, "quantization_method", None) != QuantizationMethod.BITS_AND_BYTES
|
||||
):
|
||||
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
|
||||
|
||||
peft_kwargs = {
|
||||
"r": finetuning_args.lora_rank,
|
||||
"target_modules": target_modules,
|
||||
"lora_alpha": finetuning_args.lora_alpha,
|
||||
"lora_dropout": finetuning_args.lora_dropout,
|
||||
"use_rslora": finetuning_args.use_rslora,
|
||||
"modules_to_save": finetuning_args.additional_target,
|
||||
}
|
||||
|
||||
if model_args.use_unsloth:
|
||||
from unsloth import FastLanguageModel # type: ignore
|
||||
|
||||
unsloth_peft_kwargs = {
|
||||
"model": model,
|
||||
"max_seq_length": model_args.model_max_length,
|
||||
"use_gradient_checkpointing": "unsloth",
|
||||
}
|
||||
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
|
||||
else:
|
||||
lora_config = LoraConfig(
|
||||
# task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
use_dora=finetuning_args.use_dora,
|
||||
**peft_kwargs,
|
||||
)
|
||||
model = get_peft_model(model, lora_config)
|
||||
|
||||
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):
|
||||
for param in filter(lambda p: p.requires_grad, model.parameters()):
|
||||
param.data = param.data.to(torch.float32)
|
||||
|
||||
if model_args.adapter_name_or_path is not None:
|
||||
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
|
||||
return model
|
||||
|
|
|
@ -1,22 +1,20 @@
|
|||
from typing import TYPE_CHECKING, Any, Dict
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ..extras.constants import MOD_SUPPORTED_MODELS
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import count_parameters, get_current_device, try_download_model_from_ms
|
||||
from .adapter import init_adapter
|
||||
from .adapter import init_adapter, init_mm_adapter
|
||||
from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead_model
|
||||
from .utils import load_valuehead_params, register_autoclass
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||
|
||||
from ..hparams import FinetuningArguments, ModelArguments
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
|
@ -57,12 +55,38 @@ def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
|||
return tokenizer
|
||||
|
||||
|
||||
def load_processor(model_args: "ModelArguments") -> "AutoProcessor":
|
||||
r"""
|
||||
Loads processor. Must before load_model.
|
||||
|
||||
Note: including inplace operation of model_args.
|
||||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
try:
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
use_fast=model_args.use_fast_tokenizer,
|
||||
split_special_tokens=model_args.split_special_tokens,
|
||||
padding_side="right",
|
||||
**init_kwargs,
|
||||
)
|
||||
except Exception: # try the fast one
|
||||
processor = AutoProcessor.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
use_fast=True,
|
||||
padding_side="right",
|
||||
**init_kwargs,
|
||||
)
|
||||
|
||||
return processor
|
||||
|
||||
|
||||
def load_model(
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> "PreTrainedModel":
|
||||
r"""
|
||||
Loads pretrained model. Must after load_tokenizer.
|
||||
|
@ -159,3 +183,77 @@ def load_model(
|
|||
)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def load_mm_model(
|
||||
processor: "AutoProcessor",
|
||||
model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
) -> "AutoModelForVision2Seq":
|
||||
r"""
|
||||
Loads pretrained model. Must after load_tokenizer.
|
||||
"""
|
||||
tokenizer = processor.tokenizer
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **init_kwargs)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||
|
||||
model = None
|
||||
if is_trainable and model_args.use_unsloth:
|
||||
from unsloth import FastLanguageModel # type: ignore
|
||||
|
||||
unsloth_kwargs = {
|
||||
"model_name": model_args.model_name_or_path,
|
||||
"max_seq_length": model_args.model_max_length,
|
||||
"dtype": model_args.compute_dtype,
|
||||
"load_in_4bit": model_args.quantization_bit == 4,
|
||||
"token": model_args.hf_hub_token,
|
||||
"device_map": {"": get_current_device()},
|
||||
"rope_scaling": getattr(config, "rope_scaling", None),
|
||||
"fix_tokenizer": False,
|
||||
"trust_remote_code": True,
|
||||
}
|
||||
try:
|
||||
model, _ = FastLanguageModel.from_pretrained(**unsloth_kwargs)
|
||||
except NotImplementedError:
|
||||
logger.warning("Unsloth does not support model type {}.".format(getattr(config, "model_type", None)))
|
||||
model_args.use_unsloth = False
|
||||
|
||||
if model_args.adapter_name_or_path:
|
||||
model_args.adapter_name_or_path = None
|
||||
logger.warning("Unsloth does not support loading adapters.")
|
||||
if model is None:
|
||||
init_kwargs["config"] = config
|
||||
init_kwargs["pretrained_model_name_or_path"] = model_args.model_name_or_path
|
||||
model: "AutoModelForVision2Seq" = AutoModelForVision2Seq.from_pretrained(**init_kwargs)
|
||||
patch_model(model, tokenizer, model_args, is_trainable)
|
||||
register_autoclass(config, model, tokenizer)
|
||||
|
||||
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable)
|
||||
|
||||
if not is_trainable:
|
||||
model.requires_grad_(False)
|
||||
model.eval()
|
||||
else:
|
||||
model.train()
|
||||
|
||||
trainable_params, all_param = count_parameters(model)
|
||||
if is_trainable:
|
||||
param_stats = "trainable params: {:d} || all params: {:d} || trainable%: {:.4f}".format(
|
||||
trainable_params, all_param, 100 * trainable_params / all_param
|
||||
)
|
||||
else:
|
||||
param_stats = "all params: {:d}".format(all_param)
|
||||
logger.info(param_stats)
|
||||
|
||||
if model_args.print_param_status:
|
||||
for name, param in model.named_parameters():
|
||||
print(
|
||||
"name: {}, dtype: {}, device: {}, trainable: {}".format(
|
||||
name, param.dtype, param.device, param.requires_grad
|
||||
)
|
||||
)
|
||||
|
||||
return model
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
from .workflow import run_sft_mm
|
||||
|
||||
__all__ = ["run_sft_mm"]
|
|
@ -0,0 +1,69 @@
|
|||
import json
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset as Dataset_torch
|
||||
from datasets import Dataset
|
||||
from PIL import Image
|
||||
from transformers import AutoProcessor
|
||||
|
||||
|
||||
class ImageCaptioningDataset(Dataset_torch):
|
||||
def __init__(self, dataset: Dataset, image_path: str, processor: AutoProcessor):
|
||||
self.processor = processor
|
||||
self.dataset = dataset
|
||||
self.image_path = image_path
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
source = self.dataset[idx]
|
||||
image_id = source['image']
|
||||
image = Image.open(os.path.join(self.image_path, image_id))
|
||||
convs = source['conversations']
|
||||
prompt = convs[0]['value']
|
||||
label = convs[1]['value']
|
||||
image_inputs = self.processor(image, return_tensors="pt")
|
||||
image_inputs = {k: v.squeeze() for k, v in image_inputs.items()}
|
||||
inputs = {
|
||||
"input_ids": prompt,
|
||||
"labels": label,
|
||||
}
|
||||
for key in image_inputs:
|
||||
inputs[key] = image_inputs[key]
|
||||
return inputs
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorForVis2Seq:
|
||||
processor: AutoProcessor
|
||||
use_qformer: bool = False
|
||||
|
||||
def __call__(self, features, return_tensors=None):
|
||||
processed_batch = {}
|
||||
for key in features[0].keys():
|
||||
if key == 'pixel_values':
|
||||
processed_batch[key] = torch.stack([example[key] for example in features])
|
||||
elif key == 'input_ids':
|
||||
text_inputs = self.processor.tokenizer(
|
||||
[example[key] for example in features], padding="max_length", return_tensors="pt",
|
||||
max_length=512,
|
||||
)
|
||||
processed_batch["input_ids"] = text_inputs["input_ids"]
|
||||
processed_batch["attention_mask"] = text_inputs["attention_mask"]
|
||||
if self.use_qformer:
|
||||
qformer_text_inputs = self.processor.qformer_tokenizer(
|
||||
[example[key] for example in features], padding="max_length", return_tensors="pt",
|
||||
max_length=512,
|
||||
)
|
||||
processed_batch["qformer_input_ids"] = qformer_text_inputs["input_ids"]
|
||||
processed_batch["qformer_attention_mask"] = qformer_text_inputs["attention_mask"]
|
||||
elif key == 'labels':
|
||||
text_inputs = self.processor.tokenizer(
|
||||
[example[key] for example in features], padding="max_length", return_tensors="pt",
|
||||
max_length=512,
|
||||
)
|
||||
processed_batch["labels"] = text_inputs["input_ids"]
|
||||
return processed_batch
|
|
@ -0,0 +1,61 @@
|
|||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_available
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
if is_jieba_available():
|
||||
import jieba # type: ignore
|
||||
|
||||
if is_nltk_available():
|
||||
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
|
||||
|
||||
if is_rouge_available():
|
||||
from rouge_chinese import Rouge
|
||||
|
||||
|
||||
@dataclass
|
||||
class ComputeMetrics:
|
||||
r"""
|
||||
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
|
||||
"""
|
||||
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
|
||||
def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
|
||||
r"""
|
||||
Uses the model predictions to compute metrics.
|
||||
"""
|
||||
preds, labels = eval_preds
|
||||
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
|
||||
|
||||
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
|
||||
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
|
||||
|
||||
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
|
||||
for pred, label in zip(decoded_preds, decoded_labels):
|
||||
hypothesis = list(jieba.cut(pred))
|
||||
reference = list(jieba.cut(label))
|
||||
|
||||
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
|
||||
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
|
||||
else:
|
||||
rouge = Rouge()
|
||||
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
|
||||
result = scores[0]
|
||||
|
||||
for k, v in result.items():
|
||||
score_dict[k].append(round(v["f"] * 100, 4))
|
||||
|
||||
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
||||
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
||||
|
||||
return {k: float(np.mean(v)) for k, v in score_dict.items()}
|
|
@ -0,0 +1,137 @@
|
|||
import json
|
||||
import os
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Seq2SeqTrainer
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers.trainer import PredictionOutput
|
||||
from peft import PeftModelForCausalLM
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
r"""
|
||||
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
||||
"""
|
||||
|
||||
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
|
||||
super().__init__(**kwargs)
|
||||
self.finetuning_args = finetuning_args
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
# def compute_loss(self, model, inputs, return_outputs=False):
|
||||
# print(inputs.keys())
|
||||
# device = "cuda"
|
||||
# input_ids = inputs.get("input_ids").to(device)
|
||||
# pixel_values = inputs.get("pixel_values").to(device, torch.float16)
|
||||
# attention_mask = inputs.get("attention_mask").to(device)
|
||||
# labels = inputs.get("labels").to(device)
|
||||
#
|
||||
# outputs = model(input_ids=input_ids,
|
||||
# pixel_values=pixel_values,
|
||||
# labels=labels,
|
||||
# # attention_mask=attention_mask,
|
||||
# )
|
||||
# loss = outputs.loss
|
||||
# print("Loss:", loss.item())
|
||||
# return (loss, outputs) if return_outputs else loss
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: "torch.nn.Module",
|
||||
inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
r"""
|
||||
Removes the prompt part in the generated tokens.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
|
||||
if self.args.predict_with_generate:
|
||||
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
|
||||
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
|
||||
if prompt_len > label_len:
|
||||
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
|
||||
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
|
||||
inputs["labels"] = inputs["labels"][:, :prompt_len]
|
||||
|
||||
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
|
||||
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
||||
)
|
||||
if generated_tokens is not None and self.args.predict_with_generate:
|
||||
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
|
||||
generated_tokens = generated_tokens.contiguous()
|
||||
|
||||
return loss, generated_tokens, labels
|
||||
|
||||
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
|
||||
r"""
|
||||
Pads the tensor to the same length as the target tensor.
|
||||
"""
|
||||
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
|
||||
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
|
||||
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
|
||||
return padded_tensor.contiguous() # in contiguous memory
|
||||
|
||||
def save_predictions(self, predict_results: "PredictionOutput") -> None:
|
||||
r"""
|
||||
Saves model predictions to `output_dir`.
|
||||
|
||||
A custom behavior that not contained in Seq2SeqTrainer.
|
||||
"""
|
||||
if not self.is_world_process_zero():
|
||||
return
|
||||
|
||||
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
||||
logger.info(f"Saving prediction results to {output_prediction_file}")
|
||||
|
||||
labels = np.where(
|
||||
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
|
||||
)
|
||||
preds = np.where(
|
||||
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
|
||||
)
|
||||
|
||||
for i in range(len(preds)):
|
||||
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
|
||||
if len(pad_len):
|
||||
preds[i] = np.concatenate(
|
||||
(preds[i][pad_len[0]:], preds[i][: pad_len[0]]), axis=-1
|
||||
) # move pad token to last
|
||||
|
||||
decoded_labels = self.tokenizer.batch_decode(
|
||||
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
||||
|
||||
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
||||
res: List[str] = []
|
||||
for label, pred in zip(decoded_labels, decoded_preds):
|
||||
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
|
||||
writer.write("\n".join(res))
|
|
@ -0,0 +1,105 @@
|
|||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
|
||||
import os
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import DataCollatorForSeq2Seq, LlavaNextForConditionalGeneration, AutoModelForVision2Seq
|
||||
|
||||
from ...data import split_dataset, get_mm_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.misc import get_logits_processor
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer, load_processor, load_mm_model
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .metric import ComputeMetrics
|
||||
from .trainer import CustomSeq2SeqTrainer
|
||||
from .collator import DataCollatorForVis2Seq, ImageCaptioningDataset
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
||||
|
||||
|
||||
def run_sft_mm(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
generating_args: "GeneratingArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
processor = load_processor(model_args)
|
||||
tokenizer = processor.tokenizer
|
||||
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train)
|
||||
dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft")
|
||||
if training_args.predict_with_generate:
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
splited_dataset = split_dataset(dataset, data_args, training_args)
|
||||
splited_dataset['train_dataset'].set_format(type=splited_dataset['train_dataset'].format["type"],
|
||||
columns=list(splited_dataset['train_dataset'].features.keys()))
|
||||
splited_dataset['eval_dataset'].set_format(type=splited_dataset['eval_dataset'].format["type"],
|
||||
columns=list(splited_dataset['eval_dataset'].features.keys()))
|
||||
train_dataset = ImageCaptioningDataset(splited_dataset['train_dataset'], data_args.image_path, processor)
|
||||
eval_dataset = ImageCaptioningDataset(splited_dataset['eval_dataset'], data_args.image_path, processor)
|
||||
data_collator = DataCollatorForVis2Seq(
|
||||
processor=processor,
|
||||
use_qformer=model_args.use_qformer,
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
|
||||
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
|
||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
|
||||
metrics.pop("eval_loss", None)
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
||||
predict_results.metrics.pop("predict_loss", None)
|
||||
trainer.log_metrics("predict", predict_results.metrics)
|
||||
trainer.save_metrics("predict", predict_results.metrics)
|
||||
trainer.save_predictions(predict_results)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
|
@ -14,12 +14,11 @@ from .ppo import run_ppo
|
|||
from .pt import run_pt
|
||||
from .rm import run_rm
|
||||
from .sft import run_sft
|
||||
|
||||
from .sftmm import run_sft_mm
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import TrainerCallback
|
||||
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
|
@ -31,6 +30,8 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
|
|||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "sft":
|
||||
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
elif finetuning_args.stage == "sft_mm":
|
||||
run_sft_mm(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||
elif finetuning_args.stage == "rm":
|
||||
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "ppo":
|
||||
|
|
Loading…
Reference in New Issue