release v0.8.0
This commit is contained in:
parent
12d79f89c5
commit
5aa4ce4756
|
@ -700,17 +700,8 @@ _register_template(
|
|||
_register_template(
|
||||
name="llama2",
|
||||
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
|
||||
format_assistant=StringFormatter(slots=[" {{content}} ", {"eos_token"}]),
|
||||
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
|
||||
default_system=(
|
||||
"You are a helpful, respectful and honest assistant. "
|
||||
"Always answer as helpfully as possible, while being safe. "
|
||||
"Your answers should not include any harmful, unethical, "
|
||||
"racist, sexist, toxic, dangerous, or illegal content. "
|
||||
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
|
||||
"If a question does not make any sense, or is not factually coherent, "
|
||||
"explain why instead of answering something not correct. "
|
||||
"If you don't know the answer to a question, please don't share false information."
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ from transformers.utils import is_bitsandbytes_available, is_torch_cuda_availabl
|
|||
from .packages import is_vllm_available
|
||||
|
||||
|
||||
VERSION = "0.7.2.dev0"
|
||||
VERSION = "0.8.0"
|
||||
|
||||
|
||||
def print_env() -> None:
|
||||
|
|
|
@ -0,0 +1,44 @@
|
|||
import os
|
||||
|
||||
import pytest
|
||||
from datasets import load_dataset
|
||||
|
||||
from llamafactory.data import get_dataset
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
|
||||
TRAINING_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "full",
|
||||
"dataset": "llamafactory/tiny_dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize("test_num", [5])
|
||||
def test_supervised(test_num: int):
|
||||
model_args, data_args, training_args, _, _ = get_train_args(TRAINING_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
tokenized_data = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
|
||||
original_data = load_dataset(TRAINING_ARGS["dataset"], split="train")
|
||||
for test_idx in range(test_num):
|
||||
decode_result = tokenizer.decode(tokenized_data["input_ids"][test_idx])
|
||||
messages = [
|
||||
{"role": "user", "content": original_data[test_idx]["instruction"]},
|
||||
{"role": "assistant", "content": original_data[test_idx]["output"]},
|
||||
]
|
||||
templated_result = tokenizer.apply_chat_template(messages, tokenize=False)
|
||||
assert decode_result == templated_result
|
|
@ -30,8 +30,8 @@ def test_attention():
|
|||
"flash_attn": requested_attention,
|
||||
}
|
||||
)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer["tokenizer"], model_args, finetuning_args)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args)
|
||||
for module in model.modules():
|
||||
if "Attention" in module.__class__.__name__:
|
||||
assert module.__class__.__name__ == llama_attention_classes[requested_attention]
|
|
@ -0,0 +1,61 @@
|
|||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
|
||||
TRAINING_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "freeze",
|
||||
"dataset": "llamafactory/tiny_dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
}
|
||||
|
||||
|
||||
def test_freeze_all_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(
|
||||
{
|
||||
"freeze_trainable_layers": 1,
|
||||
**TRAINING_ARGS,
|
||||
}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith("model.layers.1."):
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
|
||||
def test_freeze_extra_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(
|
||||
{
|
||||
"freeze_trainable_layers": 1,
|
||||
"freeze_extra_modules": "embed_tokens,lm_head",
|
||||
**TRAINING_ARGS,
|
||||
}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
for name, param in model.named_parameters():
|
||||
if name.startswith("model.layers.1.") or any(module in name for module in ["embed_tokens", "lm_head"]):
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
|
@ -0,0 +1,33 @@
|
|||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
|
||||
TRAINING_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "full",
|
||||
"dataset": "llamafactory/tiny_dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
}
|
||||
|
||||
|
||||
def test_full():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(TRAINING_ARGS)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
for param in model.parameters():
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
Loading…
Reference in New Issue