create chat model
This commit is contained in:
parent
d640c5545f
commit
657cf0f55a
|
@ -3,7 +3,6 @@
|
|||
# Usage: python api_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
# Visit http://localhost:8000/docs for document.
|
||||
|
||||
|
||||
import uvicorn
|
||||
|
||||
from llmtuner import create_app
|
||||
|
|
|
@ -2,46 +2,11 @@
|
|||
# Implements stream chat in command line for fine-tuned models.
|
||||
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
from threading import Thread
|
||||
from transformers import TextIteratorStreamer
|
||||
|
||||
from llmtuner import Template, get_infer_args, load_model_and_tokenizer, get_logits_processor
|
||||
from llmtuner import ChatModel, get_infer_args
|
||||
|
||||
|
||||
def main():
|
||||
model_args, data_args, finetuning_args, generating_args = get_infer_args()
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||
|
||||
prompt_template = Template(data_args.prompt_template)
|
||||
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
||||
|
||||
def predict_and_print(query, history: list) -> list:
|
||||
input_ids = tokenizer([prompt_template.get_prompt(query, history, source_prefix)], return_tensors="pt")["input_ids"]
|
||||
input_ids = input_ids.to(model.device)
|
||||
|
||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs.update({
|
||||
"input_ids": input_ids,
|
||||
"logits_processor": get_logits_processor(),
|
||||
"streamer": streamer
|
||||
})
|
||||
|
||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||
thread.start()
|
||||
|
||||
print("Assistant: ", end="", flush=True)
|
||||
|
||||
response = ""
|
||||
for new_text in streamer:
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
print()
|
||||
|
||||
history = history + [(query, response)]
|
||||
return history
|
||||
|
||||
chat_model = ChatModel(*get_infer_args())
|
||||
history = []
|
||||
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")
|
||||
|
||||
|
@ -62,7 +27,15 @@ def main():
|
|||
print("History has been removed.")
|
||||
continue
|
||||
|
||||
history = predict_and_print(query, history)
|
||||
print("Assistant: ", end="", flush=True)
|
||||
|
||||
response = ""
|
||||
for new_text in chat_model.stream_chat(query, history):
|
||||
print(new_text, end="", flush=True)
|
||||
response += new_text
|
||||
print()
|
||||
|
||||
history = history + [(query, response)]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from llmtuner.api import create_app
|
||||
from llmtuner.extras.misc import get_logits_processor
|
||||
from llmtuner.extras.template import Template
|
||||
from llmtuner.chat import ChatModel
|
||||
from llmtuner.tuner import get_train_args, get_infer_args, load_model_and_tokenizer, run_pt, run_sft, run_rm, run_ppo
|
||||
|
||||
|
||||
|
|
|
@ -1,15 +1,13 @@
|
|||
import uvicorn
|
||||
from threading import Thread
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from transformers import TextIteratorStreamer
|
||||
from contextlib import asynccontextmanager
|
||||
from sse_starlette import EventSourceResponse
|
||||
from typing import Any, Dict
|
||||
from typing import List, Tuple
|
||||
|
||||
from llmtuner.tuner import get_infer_args, load_model_and_tokenizer
|
||||
from llmtuner.extras.misc import get_logits_processor, torch_gc
|
||||
from llmtuner.extras.template import Template
|
||||
from llmtuner.tuner import get_infer_args
|
||||
from llmtuner.extras.misc import torch_gc
|
||||
from llmtuner.chat.stream_chat import ChatModel
|
||||
from llmtuner.api.protocol import (
|
||||
ModelCard,
|
||||
ModelList,
|
||||
|
@ -31,11 +29,7 @@ async def lifespan(app: FastAPI): # collects GPU memory
|
|||
|
||||
|
||||
def create_app():
|
||||
model_args, data_args, finetuning_args, generating_args = get_infer_args()
|
||||
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||
|
||||
prompt_template = Template(data_args.prompt_template)
|
||||
source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
||||
chat_model = ChatModel(*get_infer_args())
|
||||
|
||||
app = FastAPI(lifespan=lifespan)
|
||||
|
||||
|
@ -49,7 +43,6 @@ def create_app():
|
|||
|
||||
@app.get("/v1/models", response_model=ModelList)
|
||||
async def list_models():
|
||||
global model_args
|
||||
model_card = ModelCard(id="gpt-3.5-turbo")
|
||||
return ModelList(data=[model_card])
|
||||
|
||||
|
@ -63,7 +56,7 @@ def create_app():
|
|||
if len(prev_messages) > 0 and prev_messages[0].role == "system":
|
||||
prefix = prev_messages.pop(0).content
|
||||
else:
|
||||
prefix = source_prefix
|
||||
prefix = None
|
||||
|
||||
history = []
|
||||
if len(prev_messages) % 2 == 0:
|
||||
|
@ -71,33 +64,18 @@ def create_app():
|
|||
if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
|
||||
history.append([prev_messages[i].content, prev_messages[i+1].content])
|
||||
|
||||
inputs = tokenizer([prompt_template.get_prompt(query, history, prefix)], return_tensors="pt")
|
||||
inputs = inputs.to(model.device)
|
||||
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs.update({
|
||||
"input_ids": inputs["input_ids"],
|
||||
"temperature": request.temperature if request.temperature else gen_kwargs["temperature"],
|
||||
"top_p": request.top_p if request.top_p else gen_kwargs["top_p"],
|
||||
"logits_processor": get_logits_processor()
|
||||
})
|
||||
|
||||
if request.max_tokens:
|
||||
gen_kwargs.pop("max_length", None)
|
||||
gen_kwargs["max_new_tokens"] = request.max_tokens
|
||||
|
||||
if request.stream:
|
||||
generate = predict(gen_kwargs, request.model)
|
||||
generate = predict(query, history, prefix, request)
|
||||
return EventSourceResponse(generate, media_type="text/event-stream")
|
||||
|
||||
generation_output = model.generate(**gen_kwargs)
|
||||
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
response, (prompt_length, response_length) = chat_model.chat(
|
||||
query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
|
||||
)
|
||||
|
||||
usage = ChatCompletionResponseUsage(
|
||||
prompt_tokens=len(inputs["input_ids"][0]),
|
||||
completion_tokens=len(outputs),
|
||||
total_tokens=len(inputs["input_ids"][0]) + len(outputs)
|
||||
prompt_tokens=prompt_length,
|
||||
completion_tokens=response_length,
|
||||
total_tokens=prompt_length+response_length
|
||||
)
|
||||
|
||||
choice_data = ChatCompletionResponseChoice(
|
||||
|
@ -108,22 +86,18 @@ def create_app():
|
|||
|
||||
return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage, object="chat.completion")
|
||||
|
||||
async def predict(gen_kwargs: Dict[str, Any], model_id: str):
|
||||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
|
||||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||||
thread.start()
|
||||
|
||||
async def predict(query: str, history: List[Tuple[str, str]], prefix: str, request: ChatCompletionRequest):
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
index=0,
|
||||
delta=DeltaMessage(role="assistant"),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
||||
|
||||
for new_text in streamer:
|
||||
for new_text in chat_model.stream_chat(
|
||||
query, history, prefix, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens
|
||||
):
|
||||
if len(new_text) == 0:
|
||||
continue
|
||||
|
||||
|
@ -132,7 +106,7 @@ def create_app():
|
|||
delta=DeltaMessage(content=new_text),
|
||||
finish_reason=None
|
||||
)
|
||||
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
||||
|
||||
choice_data = ChatCompletionResponseStreamChoice(
|
||||
|
@ -140,7 +114,7 @@ def create_app():
|
|||
delta=DeltaMessage(),
|
||||
finish_reason="stop"
|
||||
)
|
||||
chunk = ChatCompletionStreamResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
|
||||
chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data], object="chat.completion.chunk")
|
||||
yield chunk.json(exclude_unset=True, ensure_ascii=False)
|
||||
yield "[DONE]"
|
||||
|
||||
|
|
|
@ -0,0 +1 @@
|
|||
from llmtuner.chat.stream_chat import ChatModel
|
|
@ -0,0 +1,82 @@
|
|||
from typing import Any, Dict, Generator, List, Optional, Tuple
|
||||
from threading import Thread
|
||||
from transformers import TextIteratorStreamer
|
||||
|
||||
from llmtuner.extras.misc import get_logits_processor
|
||||
from llmtuner.extras.template import Template
|
||||
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments
|
||||
from llmtuner.tuner import load_model_and_tokenizer
|
||||
|
||||
|
||||
class ChatModel:
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_args: ModelArguments,
|
||||
data_args: DataArguments,
|
||||
finetuning_args: FinetuningArguments,
|
||||
generating_args: GeneratingArguments
|
||||
) -> None:
|
||||
self.model, self.tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
||||
self.template = Template(data_args.prompt_template)
|
||||
self.source_prefix = data_args.source_prefix if data_args.source_prefix else ""
|
||||
self.generating_args = generating_args
|
||||
|
||||
def process_args(
|
||||
self, query: str, history: List[Tuple[str, str]], prefix: Optional[str] = None, **input_kwargs
|
||||
) -> Tuple[Dict[str, Any], int]:
|
||||
prefix = prefix if prefix else self.source_prefix
|
||||
|
||||
inputs = self.tokenizer([self.template.get_prompt(query, history, prefix)], return_tensors="pt")
|
||||
inputs = inputs.to(self.model.device)
|
||||
prompt_length = len(inputs["input_ids"][0])
|
||||
|
||||
temperature = input_kwargs.pop("temperature", None)
|
||||
top_p = input_kwargs.pop("top_p", None)
|
||||
top_k = input_kwargs.pop("top_k", None)
|
||||
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
|
||||
max_length = input_kwargs.pop("max_length", None)
|
||||
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
|
||||
|
||||
gen_kwargs = self.generating_args.to_dict()
|
||||
gen_kwargs.update(dict(
|
||||
input_ids=inputs["input_ids"],
|
||||
temperature=temperature if temperature else gen_kwargs["temperature"],
|
||||
top_p=top_p if top_p else gen_kwargs["top_p"],
|
||||
top_k=top_k if top_k else gen_kwargs["top_k"],
|
||||
repetition_penalty=repetition_penalty if repetition_penalty else gen_kwargs["repetition_penalty"],
|
||||
logits_processor=get_logits_processor()
|
||||
))
|
||||
|
||||
if max_length:
|
||||
gen_kwargs.pop("max_new_tokens", None)
|
||||
gen_kwargs["max_length"] = max_length
|
||||
|
||||
if max_new_tokens:
|
||||
gen_kwargs.pop("max_length", None)
|
||||
gen_kwargs["max_new_tokens"] = max_new_tokens
|
||||
|
||||
return gen_kwargs, prompt_length
|
||||
|
||||
def chat(
|
||||
self, query: str, history: List[Tuple[str, str]], prefix: Optional[str] = None, **input_kwargs
|
||||
) -> Tuple[str, Tuple[int, int]]:
|
||||
gen_kwargs, prompt_length = self.process_args(query, history, prefix, **input_kwargs)
|
||||
generation_output = self.model.generate(**gen_kwargs)
|
||||
outputs = generation_output.tolist()[0][prompt_length:]
|
||||
response = self.tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
response_length = len(outputs)
|
||||
return response, (prompt_length, response_length)
|
||||
|
||||
def stream_chat(
|
||||
self, query: str, history: List[Tuple[str, str]], prefix: Optional[str] = None, **input_kwargs
|
||||
) -> Generator[str, None, None]:
|
||||
gen_kwargs, _ = self.process_args(query, history, prefix, **input_kwargs)
|
||||
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||||
gen_kwargs["streamer"] = streamer
|
||||
|
||||
thread = Thread(target=self.model.generate, kwargs=gen_kwargs)
|
||||
thread.start()
|
||||
|
||||
for new_text in streamer:
|
||||
yield new_text
|
|
@ -29,7 +29,7 @@ class DataArguments:
|
|||
"""
|
||||
dataset: Optional[str] = field(
|
||||
default="alpaca_zh",
|
||||
metadata={"help": "The name of provided dataset(s) to use. Use comma to separate multiple datasets."}
|
||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."}
|
||||
)
|
||||
dataset_dir: Optional[str] = field(
|
||||
default="data",
|
||||
|
|
|
@ -45,7 +45,7 @@ class FinetuningArguments:
|
|||
)
|
||||
lora_target: Optional[str] = field(
|
||||
default="q_proj,v_proj",
|
||||
metadata={"help": "Name(s) of target modules to apply LoRA. Use comma to separate multiple modules. \
|
||||
metadata={"help": "Name(s) of target modules to apply LoRA. Use commas to separate multiple modules. \
|
||||
LLaMA choices: [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"], \
|
||||
BLOOM & Falcon choices: [\"query_key_value\", \"self_attention.dense\", \"mlp.dense\"], \
|
||||
Baichuan choices: [\"W_pack\", \"o_proj\", \"gate_proj\", \"up_proj\", \"down_proj\"]"}
|
||||
|
|
Loading…
Reference in New Issue