update loader
This commit is contained in:
parent
e44b82ee24
commit
6629087e12
|
@ -145,13 +145,9 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments):
|
||||||
default="lora",
|
default="lora",
|
||||||
metadata={"help": "Which fine-tuning method to use."}
|
metadata={"help": "Which fine-tuning method to use."}
|
||||||
)
|
)
|
||||||
upcast_layernorm: Optional[bool] = field(
|
|
||||||
default=False,
|
|
||||||
metadata={"help": "Whether to upcast the layernorm weights in fp32."}
|
|
||||||
)
|
|
||||||
plot_loss: Optional[bool] = field(
|
plot_loss: Optional[bool] = field(
|
||||||
default=False,
|
default=False,
|
||||||
metadata={"help": "Whether to plot the training loss after fine-tuning or not."}
|
metadata={"help": "Whether or not to save the training loss curves."}
|
||||||
)
|
)
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
|
|
|
@ -20,11 +20,11 @@ class ModelArguments:
|
||||||
)
|
)
|
||||||
use_fast_tokenizer: Optional[bool] = field(
|
use_fast_tokenizer: Optional[bool] = field(
|
||||||
default=False,
|
default=False,
|
||||||
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}
|
metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."}
|
||||||
)
|
)
|
||||||
resize_vocab: Optional[bool] = field(
|
resize_vocab: Optional[bool] = field(
|
||||||
default=False,
|
default=False,
|
||||||
metadata={"help": "Whether to resize the tokenizer vocab and the embedding layers."}
|
metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}
|
||||||
)
|
)
|
||||||
split_special_tokens: Optional[bool] = field(
|
split_special_tokens: Optional[bool] = field(
|
||||||
default=False,
|
default=False,
|
||||||
|
@ -44,11 +44,11 @@ class ModelArguments:
|
||||||
)
|
)
|
||||||
double_quantization: Optional[bool] = field(
|
double_quantization: Optional[bool] = field(
|
||||||
default=True,
|
default=True,
|
||||||
metadata={"help": "Whether to use double quantization in int4 training or not."}
|
metadata={"help": "Whether or not to use double quantization in int4 training."}
|
||||||
)
|
)
|
||||||
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
rope_scaling: Optional[Literal["linear", "dynamic"]] = field(
|
||||||
default=None,
|
default=None,
|
||||||
metadata={"help": "Adopt scaled rotary positional embeddings."}
|
metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}
|
||||||
)
|
)
|
||||||
flash_attn: Optional[bool] = field(
|
flash_attn: Optional[bool] = field(
|
||||||
default=False,
|
default=False,
|
||||||
|
@ -60,7 +60,15 @@ class ModelArguments:
|
||||||
)
|
)
|
||||||
use_unsloth: Optional[bool] = field(
|
use_unsloth: Optional[bool] = field(
|
||||||
default=False,
|
default=False,
|
||||||
metadata={"help": "Whether to use unsloth's optimization for LoRA training."}
|
metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}
|
||||||
|
)
|
||||||
|
disable_gradient_checkpointing: Optional[bool] = field(
|
||||||
|
default=False,
|
||||||
|
metadata={"help": "Whether or not to disable gradient checkpointing."}
|
||||||
|
)
|
||||||
|
upcast_layernorm: Optional[bool] = field(
|
||||||
|
default=False,
|
||||||
|
metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}
|
||||||
)
|
)
|
||||||
hf_hub_token: Optional[str] = field(
|
hf_hub_token: Optional[str] = field(
|
||||||
default=None,
|
default=None,
|
||||||
|
|
|
@ -8,7 +8,7 @@ from llmtuner.extras.logging import get_logger
|
||||||
from llmtuner.extras.misc import count_parameters, get_current_device, try_download_model_from_ms
|
from llmtuner.extras.misc import count_parameters, get_current_device, try_download_model_from_ms
|
||||||
from llmtuner.model.adapter import init_adapter
|
from llmtuner.model.adapter import init_adapter
|
||||||
from llmtuner.model.patcher import patch_config, patch_tokenizer, patch_model, patch_valuehead_model
|
from llmtuner.model.patcher import patch_config, patch_tokenizer, patch_model, patch_valuehead_model
|
||||||
from llmtuner.model.utils import load_valuehead_params, prepare_model_for_training, register_autoclass
|
from llmtuner.model.utils import load_valuehead_params, register_autoclass
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import PreTrainedModel, PreTrainedTokenizer
|
from transformers import PreTrainedModel, PreTrainedTokenizer
|
||||||
|
@ -92,10 +92,9 @@ def load_model_and_tokenizer(
|
||||||
)
|
)
|
||||||
|
|
||||||
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
|
model = model.to(model_args.compute_dtype) if not getattr(model, "quantization_method", None) else model
|
||||||
patch_model(model, tokenizer, model_args)
|
patch_model(model, tokenizer, model_args, is_trainable)
|
||||||
register_autoclass(config, model, tokenizer)
|
register_autoclass(config, model, tokenizer)
|
||||||
|
|
||||||
model = prepare_model_for_training(model=model, finetuning_args=finetuning_args) if is_trainable else model
|
|
||||||
model = init_adapter(model, model_args, finetuning_args, is_trainable)
|
model = init_adapter(model, model_args, finetuning_args, is_trainable)
|
||||||
|
|
||||||
if add_valuehead:
|
if add_valuehead:
|
||||||
|
|
|
@ -144,7 +144,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
||||||
|
|
||||||
_verify_model_args(model_args, finetuning_args)
|
_verify_model_args(model_args, finetuning_args)
|
||||||
|
|
||||||
if training_args.do_train and model_args.quantization_bit is not None and (not finetuning_args.upcast_layernorm):
|
if training_args.do_train and model_args.quantization_bit is not None and (not model_args.upcast_layernorm):
|
||||||
logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
|
logger.warning("We recommend enable `upcast_layernorm` in quantized training.")
|
||||||
|
|
||||||
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
|
if training_args.do_train and (not training_args.fp16) and (not training_args.bf16):
|
||||||
|
|
|
@ -3,14 +3,14 @@ import math
|
||||||
import torch
|
import torch
|
||||||
import random
|
import random
|
||||||
from types import MethodType
|
from types import MethodType
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple
|
||||||
from datasets import load_dataset
|
from datasets import load_dataset
|
||||||
|
|
||||||
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase
|
from transformers import BitsAndBytesConfig, GPTQConfig, PreTrainedModel, PreTrainedTokenizerBase
|
||||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||||
from transformers.utils.versions import require_version
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
from llmtuner.extras.constants import FILEEXT2TYPE
|
from llmtuner.extras.constants import FILEEXT2TYPE, LAYERNORM_NAMES
|
||||||
from llmtuner.extras.logging import get_logger
|
from llmtuner.extras.logging import get_logger
|
||||||
from llmtuner.extras.misc import get_current_device, infer_optim_dtype
|
from llmtuner.extras.misc import get_current_device, infer_optim_dtype
|
||||||
from llmtuner.extras.packages import is_flash_attn2_available
|
from llmtuner.extras.packages import is_flash_attn2_available
|
||||||
|
@ -180,6 +180,42 @@ def _configure_quantization(
|
||||||
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
|
||||||
|
|
||||||
|
|
||||||
|
def _prepare_model_for_training(
|
||||||
|
model: "PreTrainedModel",
|
||||||
|
model_args: "ModelArguments",
|
||||||
|
output_layer_name: Optional[str] = "lm_head"
|
||||||
|
) -> None:
|
||||||
|
r"""
|
||||||
|
Includes:
|
||||||
|
(1) cast the layernorm in fp32
|
||||||
|
(2) make output embedding layer require grads
|
||||||
|
(3) add the upcasting of the lm_head in fp32
|
||||||
|
Inspired by: https://github.com/huggingface/peft/blob/v0.7.1/src/peft/utils/other.py#L72
|
||||||
|
"""
|
||||||
|
if model_args.upcast_layernorm:
|
||||||
|
for name, param in model.named_parameters():
|
||||||
|
if param.ndim == 1 and any(ln_name in name for ln_name in LAYERNORM_NAMES):
|
||||||
|
param.data = param.data.to(torch.float32)
|
||||||
|
logger.info("Upcasting layernorm weights in float32.")
|
||||||
|
|
||||||
|
if not model_args.disable_gradient_checkpointing:
|
||||||
|
if getattr(model, "supports_gradient_checkpointing", False):
|
||||||
|
logger.warning("Current model does not support gradient checkpointing.")
|
||||||
|
else:
|
||||||
|
model.enable_input_require_grads()
|
||||||
|
model.gradient_checkpointing_enable()
|
||||||
|
model.config.use_cache = False # turn off when gradient checkpointing is enabled
|
||||||
|
logger.info("Gradient checkpointing enabled.")
|
||||||
|
|
||||||
|
if hasattr(model, output_layer_name):
|
||||||
|
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
|
||||||
|
return output.to(torch.float32)
|
||||||
|
|
||||||
|
output_layer = getattr(model, output_layer_name)
|
||||||
|
if isinstance(output_layer, torch.nn.Linear) and output_layer.weight.dtype != torch.float32:
|
||||||
|
output_layer.register_forward_hook(fp32_forward_post_hook)
|
||||||
|
|
||||||
|
|
||||||
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
|
def patch_tokenizer(tokenizer: "PreTrainedTokenizer") -> None:
|
||||||
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
if "PreTrainedTokenizerBase" not in str(tokenizer._pad.__func__):
|
||||||
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
tokenizer._pad = MethodType(PreTrainedTokenizerBase._pad, tokenizer)
|
||||||
|
@ -206,7 +242,12 @@ def patch_config(
|
||||||
_configure_quantization(config, tokenizer, model_args, config_kwargs)
|
_configure_quantization(config, tokenizer, model_args, config_kwargs)
|
||||||
|
|
||||||
|
|
||||||
def patch_model(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer", model_args: "ModelArguments") -> None:
|
def patch_model(
|
||||||
|
model: "PreTrainedModel",
|
||||||
|
tokenizer: "PreTrainedTokenizer",
|
||||||
|
model_args: "ModelArguments",
|
||||||
|
is_trainable: bool
|
||||||
|
) -> None:
|
||||||
if "GenerationMixin" not in str(model.generate.__func__):
|
if "GenerationMixin" not in str(model.generate.__func__):
|
||||||
model.generate = MethodType(PreTrainedModel.generate, model)
|
model.generate = MethodType(PreTrainedModel.generate, model)
|
||||||
|
|
||||||
|
@ -220,6 +261,10 @@ def patch_model(model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer", mode
|
||||||
|
|
||||||
_resize_embedding_layer(model, tokenizer)
|
_resize_embedding_layer(model, tokenizer)
|
||||||
|
|
||||||
|
if is_trainable:
|
||||||
|
_prepare_model_for_training(model, model_args)
|
||||||
|
|
||||||
|
|
||||||
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
|
def patch_valuehead_model(model: "AutoModelForCausalLMWithValueHead") -> None:
|
||||||
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None:
|
def tie_weights(self: "AutoModelForCausalLMWithValueHead") -> None:
|
||||||
if isinstance(self.pretrained_model, PreTrainedModel):
|
if isinstance(self.pretrained_model, PreTrainedModel):
|
||||||
|
|
|
@ -1,19 +1,15 @@
|
||||||
import math
|
|
||||||
import torch
|
import torch
|
||||||
import inspect
|
import inspect
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple
|
from typing import TYPE_CHECKING, Any, Dict, List
|
||||||
|
|
||||||
from transformers.utils import cached_file
|
from transformers.utils import cached_file
|
||||||
from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
|
from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME
|
||||||
|
|
||||||
from llmtuner.extras.constants import LAYERNORM_NAMES
|
|
||||||
from llmtuner.extras.logging import get_logger
|
from llmtuner.extras.logging import get_logger
|
||||||
from llmtuner.extras.misc import get_current_device
|
from llmtuner.extras.misc import get_current_device
|
||||||
from llmtuner.hparams import ModelArguments, FinetuningArguments
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
|
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer
|
||||||
from llmtuner.hparams import DataArguments
|
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
|
||||||
|
|
||||||
|
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
@ -123,51 +119,6 @@ def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") ->
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
|
||||||
def prepare_model_for_training(
|
|
||||||
model: "PreTrainedModel",
|
|
||||||
finetuning_args: "FinetuningArguments",
|
|
||||||
output_layer_name: Optional[str] = "lm_head",
|
|
||||||
use_gradient_checkpointing: Optional[bool] = True,
|
|
||||||
layernorm_names: Optional[Set[str]] = LAYERNORM_NAMES
|
|
||||||
) -> "PreTrainedModel":
|
|
||||||
r"""
|
|
||||||
Includes:
|
|
||||||
(1) cast the layernorm in fp32
|
|
||||||
(2) make output embedding layer require grads
|
|
||||||
(3) upcast the lm_head to fp32
|
|
||||||
Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33
|
|
||||||
"""
|
|
||||||
if finetuning_args.upcast_layernorm:
|
|
||||||
for name, param in model.named_parameters():
|
|
||||||
if param.ndim == 1 and any(ln_name in name for ln_name in layernorm_names):
|
|
||||||
param.data = param.data.to(torch.float32)
|
|
||||||
logger.info("Upcasting weights in layernorm in float32.")
|
|
||||||
|
|
||||||
if use_gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False):
|
|
||||||
if hasattr(model, "enable_input_require_grads"):
|
|
||||||
model.enable_input_require_grads()
|
|
||||||
else:
|
|
||||||
def make_inputs_require_grad(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
|
|
||||||
output.requires_grad_(True)
|
|
||||||
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
|
||||||
|
|
||||||
model.gradient_checkpointing_enable()
|
|
||||||
model.config.use_cache = False # turn off when gradient checkpointing is enabled
|
|
||||||
logger.info("Gradient checkpointing enabled.")
|
|
||||||
|
|
||||||
if finetuning_args.finetuning_type != "full" and hasattr(model, output_layer_name):
|
|
||||||
output_layer = getattr(model, output_layer_name)
|
|
||||||
if isinstance(output_layer, torch.nn.Linear):
|
|
||||||
def fp32_forward_pre_hook(module: torch.nn.Module, args: Tuple[torch.Tensor]):
|
|
||||||
return args[0].to(output_layer.weight.dtype)
|
|
||||||
def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor):
|
|
||||||
return output.to(torch.float32)
|
|
||||||
output_layer.register_forward_pre_hook(fp32_forward_pre_hook)
|
|
||||||
output_layer.register_forward_hook(fp32_forward_post_hook)
|
|
||||||
|
|
||||||
return model
|
|
||||||
|
|
||||||
|
|
||||||
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
|
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
|
||||||
if "AutoConfig" in getattr(config, "auto_map", {}):
|
if "AutoConfig" in getattr(config, "auto_map", {}):
|
||||||
config.__class__.register_for_auto_class()
|
config.__class__.register_for_auto_class()
|
||||||
|
|
Loading…
Reference in New Issue