fix #4090
This commit is contained in:
parent
83a005e3d4
commit
67fe822324
|
@ -2,7 +2,7 @@ transformers>=4.41.2
|
||||||
datasets>=2.16.0
|
datasets>=2.16.0
|
||||||
accelerate>=0.30.1
|
accelerate>=0.30.1
|
||||||
peft>=0.11.1
|
peft>=0.11.1
|
||||||
trl>=0.8.6
|
trl>=0.9.3
|
||||||
gradio>=4.0.0
|
gradio>=4.0.0
|
||||||
scipy
|
scipy
|
||||||
einops
|
einops
|
||||||
|
|
|
@ -65,7 +65,7 @@ def check_dependencies() -> None:
|
||||||
require_version("datasets>=2.16.0", "To fix: pip install datasets>=2.16.0")
|
require_version("datasets>=2.16.0", "To fix: pip install datasets>=2.16.0")
|
||||||
require_version("accelerate>=0.30.1", "To fix: pip install accelerate>=0.30.1")
|
require_version("accelerate>=0.30.1", "To fix: pip install accelerate>=0.30.1")
|
||||||
require_version("peft>=0.11.1", "To fix: pip install peft>=0.11.1")
|
require_version("peft>=0.11.1", "To fix: pip install peft>=0.11.1")
|
||||||
require_version("trl>=0.8.6", "To fix: pip install trl>=0.8.6")
|
require_version("trl>=0.9.3", "To fix: pip install trl>=0.9.3")
|
||||||
|
|
||||||
|
|
||||||
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
|
||||||
|
|
|
@ -93,18 +93,6 @@ class CustomDPOTrainer(DPOTrainer):
|
||||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||||
|
|
||||||
def sft_loss(self, batch: Dict[str, "torch.Tensor"], chosen_logits: "torch.FloatTensor") -> "torch.Tensor":
|
|
||||||
r"""
|
|
||||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
|
||||||
"""
|
|
||||||
batch_size = batch["input_ids"].size(0) // 2
|
|
||||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
|
||||||
chosen_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
|
||||||
return -chosen_logps
|
|
||||||
|
|
||||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||||
r"""
|
r"""
|
||||||
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.
|
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.
|
||||||
|
@ -156,9 +144,9 @@ class CustomDPOTrainer(DPOTrainer):
|
||||||
|
|
||||||
def concatenated_forward(
|
def concatenated_forward(
|
||||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||||
r"""
|
r"""
|
||||||
Computes the sum log probabilities of the labels under the given logits if loss_type != IPO.
|
Computes the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO.
|
||||||
|
|
||||||
Otherwise the average log probabilities.
|
Otherwise the average log probabilities.
|
||||||
"""
|
"""
|
||||||
|
@ -167,17 +155,20 @@ class CustomDPOTrainer(DPOTrainer):
|
||||||
|
|
||||||
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
|
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||||
|
|
||||||
all_logps = self.get_batch_logps(
|
all_logps, valid_length = self.get_batch_logps(
|
||||||
logits=all_logits,
|
logits=all_logits,
|
||||||
labels=batch["labels"],
|
labels=batch["labels"],
|
||||||
average_log_prob=(self.loss_type in ["ipo", "orpo", "simpo"]),
|
|
||||||
is_encoder_decoder=self.is_encoder_decoder,
|
is_encoder_decoder=self.is_encoder_decoder,
|
||||||
label_pad_token_id=self.label_pad_token_id,
|
label_pad_token_id=self.label_pad_token_id,
|
||||||
)
|
)
|
||||||
|
if self.loss_type in ["ipo", "orpo", "simpo"]:
|
||||||
|
all_logps = all_logps / valid_length
|
||||||
|
|
||||||
batch_size = batch["input_ids"].size(0) // 2
|
batch_size = batch["input_ids"].size(0) // 2
|
||||||
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
||||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
chosen_length, _ = valid_length.split(batch_size, dim=0)
|
||||||
|
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length
|
||||||
|
|
||||||
def compute_reference_log_probs(
|
def compute_reference_log_probs(
|
||||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||||
|
@ -201,6 +192,7 @@ class CustomDPOTrainer(DPOTrainer):
|
||||||
reference_rejected_logps,
|
reference_rejected_logps,
|
||||||
_,
|
_,
|
||||||
_,
|
_,
|
||||||
|
_,
|
||||||
) = self.concatenated_forward(ref_model, batch)
|
) = self.concatenated_forward(ref_model, batch)
|
||||||
|
|
||||||
return reference_chosen_logps, reference_rejected_logps
|
return reference_chosen_logps, reference_rejected_logps
|
||||||
|
@ -220,6 +212,7 @@ class CustomDPOTrainer(DPOTrainer):
|
||||||
policy_rejected_logps,
|
policy_rejected_logps,
|
||||||
policy_chosen_logits,
|
policy_chosen_logits,
|
||||||
policy_rejected_logits,
|
policy_rejected_logits,
|
||||||
|
policy_chosen_logps_avg,
|
||||||
) = self.concatenated_forward(model, batch)
|
) = self.concatenated_forward(model, batch)
|
||||||
|
|
||||||
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch)
|
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(model, batch)
|
||||||
|
@ -229,7 +222,7 @@ class CustomDPOTrainer(DPOTrainer):
|
||||||
reference_chosen_logps,
|
reference_chosen_logps,
|
||||||
reference_rejected_logps,
|
reference_rejected_logps,
|
||||||
)
|
)
|
||||||
sft_loss = self.sft_loss(batch, policy_chosen_logits) # compute chosen_logps with masks
|
sft_loss = -policy_chosen_logps_avg
|
||||||
if self.ftx_gamma > 1e-6:
|
if self.ftx_gamma > 1e-6:
|
||||||
losses += self.ftx_gamma * sft_loss
|
losses += self.ftx_gamma * sft_loss
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue