Merge pull request #3748 from BUAADreamer/main

Add MLLM YI-VL and save processor config during training
This commit is contained in:
hoshi-hiyouga 2024-05-15 16:40:54 +08:00 committed by GitHub
commit 75f405ec30
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 57 additions and 8 deletions

View File

@ -856,6 +856,21 @@ _register_template(
) )
_register_template(
name="yi_vl",
format_user=StringFormatter(slots=["### Human: {{content}}\n### Assistant:"]),
format_separator=EmptyFormatter(slots=["\n"]),
default_system=(
"This is a chat between an inquisitive human and an AI assistant. "
"Assume the role of the AI assistant. Read all the images carefully, "
"and respond to the human's questions with informative, helpful, detailed and polite answers. "
"这是一个好奇的人类和一个人工智能助手之间的对话。假设你扮演这个AI助手的角色。"
"仔细阅读所有的图像,并对人类的问题做出信息丰富、有帮助、详细的和礼貌的回答。\n"
),
stop_words=["###"],
)
_register_template( _register_template(
name="yuan", name="yuan",
format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]), format_user=StringFormatter(slots=["{{content}}", {"token": "<sep>"}]),

View File

@ -18,7 +18,7 @@ from .utils.moe import add_z3_leaf_module, configure_moe
from .utils.quantization import configure_quantization from .utils.quantization import configure_quantization
from .utils.rope import configure_rope from .utils.rope import configure_rope
from .utils.valuehead import prepare_valuehead_model from .utils.valuehead import prepare_valuehead_model
from .utils.visual import autocast_projector_dtype, configure_hidden_size from .utils.visual import autocast_projector_dtype, configure_visual_model
if TYPE_CHECKING: if TYPE_CHECKING:
@ -55,7 +55,7 @@ def patch_config(
configure_longlora(config, model_args, is_trainable) configure_longlora(config, model_args, is_trainable)
configure_quantization(config, tokenizer, model_args, init_kwargs) configure_quantization(config, tokenizer, model_args, init_kwargs)
configure_moe(config, model_args, is_trainable) configure_moe(config, model_args, is_trainable)
configure_hidden_size(config) configure_visual_model(config)
if model_args.use_cache and not is_trainable: if model_args.use_cache and not is_trainable:
setattr(config, "use_cache", True) setattr(config, "use_cache", True)

View File

@ -1,12 +1,14 @@
from typing import TYPE_CHECKING, Tuple from typing import TYPE_CHECKING, Tuple
import torch import torch
import transformers.models
from transformers.activations import ACT2FN
from ...extras.logging import get_logger from ...extras.logging import get_logger
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedModel from transformers import LlavaConfig, PretrainedConfig, PreTrainedModel
from ...hparams import ModelArguments from ...hparams import ModelArguments
@ -14,9 +16,23 @@ if TYPE_CHECKING:
logger = get_logger(__name__) logger = get_logger(__name__)
def configure_hidden_size(config: "PretrainedConfig") -> None: class LlavaMultiModalProjector(torch.nn.Module):
if getattr(config, "model_type", None) == "llava": def __init__(self, config: "LlavaConfig"):
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) super().__init__()
self.linear_1 = torch.nn.Linear(config.vision_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_2 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.linear_3 = torch.nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True)
self.linear_4 = torch.nn.LayerNorm(config.text_config.hidden_size, bias=True)
self.act = ACT2FN[config.projector_hidden_act]
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_3(hidden_states)
hidden_states = self.linear_4(hidden_states)
return hidden_states
def autocast_projector_dtype( def autocast_projector_dtype(
@ -31,3 +47,11 @@ def autocast_projector_dtype(
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype)) logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name) mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
mm_projector.register_forward_hook(_mm_projector_forward_post_hook) mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
def configure_visual_model(config: "PretrainedConfig") -> None:
if getattr(config, "model_type", None) == "llava":
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
if getattr(config, "is_yi_vl_derived_model", None):
transformers.models.llava.modeling_llava.LlavaMultiModalProjector = LlavaMultiModalProjector

View File

@ -13,6 +13,7 @@ from ..utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import ProcessorMixin
from transformers.trainer import PredictionOutput from transformers.trainer import PredictionOutput
from ...hparams import FinetuningArguments from ...hparams import FinetuningArguments
@ -26,9 +27,12 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE. Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
""" """
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None: def __init__(
self, finetuning_args: "FinetuningArguments", processor: Optional["ProcessorMixin"], **kwargs
) -> None:
super().__init__(**kwargs) super().__init__(**kwargs)
self.finetuning_args = finetuning_args self.finetuning_args = finetuning_args
self.processor = processor
if finetuning_args.use_badam: if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor from badam import clip_grad_norm_for_sparse_tensor
@ -45,6 +49,12 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
create_custom_scheduler(self.args, num_training_steps, optimizer) create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer) return super().create_scheduler(num_training_steps, optimizer)
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
if self.processor is not None:
output_dir = output_dir if output_dir is not None else self.args.output_dir
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def prediction_step( def prediction_step(
self, self,
model: "torch.nn.Module", model: "torch.nn.Module",

View File

@ -55,10 +55,10 @@ def run_sft(
model=model, model=model,
args=training_args, args=training_args,
finetuning_args=finetuning_args, finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator, data_collator=data_collator,
callbacks=callbacks, callbacks=callbacks,
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None, compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
**tokenizer_module,
**split_dataset(dataset, data_args, training_args), **split_dataset(dataset, data_args, training_args),
) )