diff --git a/README.md b/README.md index 0dd4e45c..087d450c 100644 --- a/README.md +++ b/README.md @@ -1,29 +1,197 @@ # LLaMA Efficient Tuning +![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/ChatGLM-Efficient-Tuning?style=social) +![GitHub Code License](https://img.shields.io/github/license/hiyouga/ChatGLM-Efficient-Tuning) +![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/ChatGLM-Efficient-Tuning) +![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue) + +## Requirement + +- Python 3.8+ and PyTorch 1.13.1 +- 🤗Transformers, Datasets, Accelerate, PEFT and TRL +- protobuf, cpm_kernels and sentencepiece +- jieba, rouge_chinese and nltk (used at evaluation) +- gradio and mdtex2html (used in web_demo.py) + +And **powerful GPUs**! + +## Getting Started + +### Data Preparation (optional) + +Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset. + +Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`. + +### Dependence Installation (optional) + +```bash +git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git +conda create -n llama_etuning python=3.10 +conda activate llama_etuning +cd LLaMA-Efficient-Tuning +pip install -r requirements.txt +``` + +### LLaMA Weights Preparation + 1. Download the weights of the LLaMA models. 2. Convert them to HF format using this [script](https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py) ```python python convert_llama_weights_to_hf.py \ - --input_dir path_to_llama_weights --model_size 7B --output_dir llama_7b + --input_dir path_to_llama_weights --model_size 7B --output_dir path_to_llama_model ``` -3. Fine-tune the LLaMA models. +### (Continually) Pre-Training + +```bash +CUDA_VISIBLE_DEVICES=0 python src/train_pt.py \ + --model_name_or_path path_to_llama_model \ + --do_train \ + --dataset wiki_demo \ + --finetuning_type lora \ + --output_dir path_to_pt_checkpoint \ + --overwrite_cache \ + --per_device_train_batch_size 4 \ + --gradient_accumulation_steps 4 \ + --lr_scheduler_type cosine \ + --logging_steps 10 \ + --save_steps 1000 \ + --learning_rate 5e-5 \ + --num_train_epochs 3.0 \ + --plot_loss \ + --fp16 +``` + +### Supervised Fine-Tuning ```bash CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ - --model_name_or_path llama_7b \ + --model_name_or_path path_to_llama_model \ --do_train \ - --dataset alpaca_gpt4_zh \ + --dataset alpaca_gpt4_en \ --finetuning_type lora \ + --checkpoint_dir path_to_pt_checkpoint \ --output_dir path_to_sft_checkpoint \ --overwrite_cache \ - --per_device_train_batch_size 2 \ - --gradient_accumulation_steps 2 \ + --per_device_train_batch_size 4 \ + --gradient_accumulation_steps 4 \ --lr_scheduler_type cosine \ --logging_steps 10 \ - --save_steps 100 \ - --learning_rate 1e-5 \ - --num_train_epochs 1.0 \ + --save_steps 1000 \ + --learning_rate 5e-5 \ + --num_train_epochs 3.0 \ + --resume_lora_training False \ + --plot_loss \ --fp16 ``` + +### Reward Model Training + +```bash +CUDA_VISIBLE_DEVICES=0 python src/train_rm.py \ + --model_name_or_path path_to_llama_model \ + --do_train \ + --dataset comparison_gpt4_en \ + --finetuning_type lora \ + --checkpoint_dir path_to_pt_checkpoint \ + --output_dir path_to_rm_checkpoint \ + --per_device_train_batch_size 4 \ + --gradient_accumulation_steps 4 \ + --lr_scheduler_type cosine \ + --logging_steps 10 \ + --save_steps 1000 \ + --learning_rate 1e-5 \ + --num_train_epochs 1.0 \ + --plot_loss \ + --fp16 +``` + +### PPO Training (RLHF) + +```bash +CUDA_VISIBLE_DEVICES=0 python src/train_ppo.py \ + --model_name_or_path path_to_llama_model \ + --do_train \ + --dataset alpaca_gpt4_en \ + --finetuning_type lora \ + --checkpoint_dir path_to_pt_checkpoint,path_to_sft_checkpoint \ + --reward_model path_to_rm_checkpoint \ + --output_dir path_to_ppo_checkpoint \ + --per_device_train_batch_size 2 \ + --gradient_accumulation_steps 4 \ + --lr_scheduler_type cosine \ + --logging_steps 10 \ + --save_steps 1000 \ + --learning_rate 1e-5 \ + --num_train_epochs 1.0 \ + --resume_lora_training False \ + --plot_loss +``` + +### Distributed Training + +```bash +accelerate config # configure the environment +accelerate launch src/train_XX.py # arguments (same as above) +``` + +### Evaluation (BLEU and ROUGE_CHINESE) + +```bash +CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \ + --model_name_or_path path_to_llama_model \ + --do_eval \ + --dataset alpaca_gpt4_en \ + --checkpoint_dir path_to_checkpoint \ + --output_dir path_to_eval_result \ + --per_device_eval_batch_size 8 \ + --max_samples 50 \ + --predict_with_generate +``` + +### CLI Demo + +```bash +python src/cli_demo.py \ + --model_name_or_path path_to_llama_model \ + --checkpoint_dir path_to_checkpoint +``` + +### Web Demo +```bash +python src/web_demo.py \ + --model_name_or_path path_to_llama_model \ + --checkpoint_dir path_to_checkpoint +``` + +### Export model + +```bash +python src/export_model.py \ + --model_name_or_path path_to_llama_model \ + --checkpoint_dir path_to_checkpoint \ + --output_dir path_to_export +``` + +## License + +This repository is licensed under the [Apache-2.0 License](LICENSE). Please follow the [Model Card](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) to use the LLaMA model. + +## Citation + +If this work is helpful, please cite as: + +```bibtex +@Misc{llama-efficient-tuning, + title = {LLaMA Efficient Tuning}, + author = {hiyouga}, + howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}}, + year = {2023} +} +``` + +## Acknowledgement + +This repo is a sibling of [ChatGLM-Efficient-Tuning](https://github.com/hiyouga/ChatGLM-Efficient-Tuning). They share a similar code structure of efficient tuning on large language models. diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 00000000..0afa59ca --- /dev/null +++ b/requirements.txt @@ -0,0 +1,14 @@ +torch>=1.13.1 +protobuf +cpm_kernels +sentencepiece +transformers>=4.27.4 +datasets>=2.10.0 +accelerate>=0.18.0 +peft>=0.3.0 +trl>=0.4.1 +jieba +rouge_chinese +nltk +gradio +mdtex2html