update examples
This commit is contained in:
parent
c94e6c9411
commit
892e561c28
|
@ -11,6 +11,8 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
|
|||
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
|
||||
- [Extras](#extras)
|
||||
|
||||
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
|
||||
|
||||
## Examples
|
||||
|
||||
### LoRA Fine-Tuning
|
||||
|
@ -87,7 +89,7 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
|
|||
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds.yaml
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
### QLoRA Fine-Tuning
|
||||
|
@ -121,14 +123,14 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_s
|
|||
#### Supervised Fine-Tuning on Single Node
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### Supervised Fine-Tuning on Multiple Nodes
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||
|
|
|
@ -11,6 +11,8 @@
|
|||
- [推理 LoRA 模型](#推理-lora-模型)
|
||||
- [杂项](#杂项)
|
||||
|
||||
使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。
|
||||
|
||||
## 示例
|
||||
|
||||
### LoRA 微调
|
||||
|
@ -87,7 +89,7 @@ FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llama
|
|||
#### 使用 DeepSpeed ZeRO-3 平均分配显存
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds.yaml
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
|
||||
```
|
||||
|
||||
### QLoRA 微调
|
||||
|
@ -121,14 +123,14 @@ llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
|||
#### 在单机上进行指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### 在多机上进行指令监督微调
|
||||
|
||||
```bash
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
|
||||
```
|
||||
|
||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||
|
|
Loading…
Reference in New Issue