diff --git a/src/llmtuner/model/utils/longlora.py b/src/llmtuner/model/utils/longlora.py index a11351f1..c8dc52f5 100644 --- a/src/llmtuner/model/utils/longlora.py +++ b/src/llmtuner/model/utils/longlora.py @@ -41,9 +41,9 @@ def llama_attention_forward( ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) + query_states: "torch.Tensor" = self.q_proj(hidden_states) + key_states: "torch.Tensor" = self.k_proj(hidden_states) + value_states: "torch.Tensor" = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) @@ -87,7 +87,7 @@ def llama_attention_forward( # upcast attention to fp32 attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) - attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz*n_group, :, groupsz, :) + attn_output = torch.matmul(attn_weights, value_states) # (bsz, :, seq_len, :) or (bsz * n_group, :, groupsz, :) attn_output = attn_output.transpose(1, 2).contiguous() if getattr(self.config, "group_size_ratio", None) and self.training: # shift back @@ -125,9 +125,9 @@ def llama_flash_attention_2_forward( bsz, q_len, _ = hidden_states.size() - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) + query_states: "torch.Tensor" = self.q_proj(hidden_states) + key_states: "torch.Tensor" = self.k_proj(hidden_states) + value_states: "torch.Tensor" = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) @@ -233,9 +233,9 @@ def llama_sdpa_attention_forward( bsz, q_len, _ = hidden_states.size() - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) + query_states: "torch.Tensor" = self.q_proj(hidden_states) + key_states: "torch.Tensor" = self.k_proj(hidden_states) + value_states: "torch.Tensor" = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) @@ -270,11 +270,12 @@ def llama_sdpa_attention_forward( causal_mask = attention_mask if attention_mask is not None: - causal_mask = causal_mask[:, :, :, :groupsz] + causal_mask = causal_mask[:, :, :, : key_states.shape[-2]] - query_states = query_states.contiguous() - key_states = key_states.contiguous() - value_states = value_states.contiguous() + if query_states.device.type == "cuda" and causal_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() attn_output = torch.nn.functional.scaled_dot_product_attention( query_states,