This commit is contained in:
BUAADreamer 2024-04-25 21:08:32 +08:00
parent eefcd105c1
commit 94ad744941
8 changed files with 80 additions and 283 deletions

View File

@ -1,11 +1,10 @@
from .loader import load_config, load_model, load_tokenizer, load_processor from .loader import load_config, load_model, load_tokenizer
from .utils.misc import find_all_linear_modules, load_valuehead_params from .utils.misc import find_all_linear_modules, load_valuehead_params
__all__ = [ __all__ = [
"load_config", "load_config",
"load_model", "load_model",
"load_tokenizer", "load_tokenizer",
"load_processor",
"load_valuehead_params", "load_valuehead_params",
"find_all_linear_modules", "find_all_linear_modules",
] ]

View File

@ -40,7 +40,9 @@ def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
} }
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer": def load_tokenizer(
model_args: "ModelArguments",
) -> Dict[str, Union["PreTrainedTokenizer", "AutoProcesser"]]:
r""" r"""
Loads pretrained tokenizer. Loads pretrained tokenizer.
@ -78,33 +80,25 @@ def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
) )
patch_tokenizer(tokenizer) patch_tokenizer(tokenizer)
return tokenizer tokenizer_modules = {"tokenizer": tokenizer, "processor": None}
if model_args.use_mllm:
try:
def load_processor(model_args: "ModelArguments") -> "AutoProcessor": processor = AutoProcessor.from_pretrained(
r""" model_args.model_name_or_path,
Loads processor. Must before load_model. use_fast=model_args.use_fast_tokenizer,
split_special_tokens=model_args.split_special_tokens,
Note: including inplace operation of model_args. padding_side="right",
""" **init_kwargs,
init_kwargs = _get_init_kwargs(model_args) )
try: except Exception: # try the fast one
processor = AutoProcessor.from_pretrained( processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path, model_args.model_name_or_path,
use_fast=model_args.use_fast_tokenizer, use_fast=True,
split_special_tokens=model_args.split_special_tokens, padding_side="right",
padding_side="right", **init_kwargs,
**init_kwargs, )
) tokenizer_modules["processor"] = processor
except Exception: # try the fast one return tokenizer_modules
processor = AutoProcessor.from_pretrained(
model_args.model_name_or_path,
use_fast=True,
padding_side="right",
**init_kwargs,
)
return processor
def load_config(model_args: "ModelArguments") -> "PretrainedConfig": def load_config(model_args: "ModelArguments") -> "PretrainedConfig":

View File

@ -17,7 +17,12 @@ from .trainer import CustomSeq2SeqTrainer
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments from ...hparams import (
DataArguments,
FinetuningArguments,
GeneratingArguments,
ModelArguments,
)
def run_sft( def run_sft(
@ -28,25 +33,48 @@ def run_sft(
generating_args: "GeneratingArguments", generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None, callbacks: Optional[List["TrainerCallback"]] = None,
): ):
tokenizer = load_tokenizer(model_args) tokenizer_modules = load_tokenizer(model_args)
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft") tokenizer = tokenizer_modules["tokenizer"]
processor = tokenizer_modules["processor"]
dataset = get_dataset(
tokenizer,
model_args,
data_args,
training_args,
stage="sft",
processor=processor,
)
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
if training_args.predict_with_generate: if training_args.predict_with_generate:
tokenizer.padding_side = "left" # use left-padding in generation tokenizer.padding_side = "left" # use left-padding in generation
if getattr(model, "is_quantized", False) and not training_args.do_train: if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction setattr(
model, "_hf_peft_config_loaded", True
) # hack here: make model compatible with prediction
data_collator = DataCollatorForSeq2Seq( data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer, tokenizer=tokenizer,
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention pad_to_multiple_of=(
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, 8 if tokenizer.padding_side == "right" else None
), # for shift short attention
label_pad_token_id=(
IGNORE_INDEX
if data_args.ignore_pad_token_for_loss
else tokenizer.pad_token_id
),
) )
# Override the decoding parameters of Seq2SeqTrainer # Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len training_args.generation_max_length = (
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams training_args.generation_max_length or data_args.cutoff_len
)
training_args.generation_num_beams = (
data_args.eval_num_beams or training_args.generation_num_beams
)
if model_args.use_mllm:
training_args.remove_unused_columns = False
# Initialize our Trainer # Initialize our Trainer
trainer = CustomSeq2SeqTrainer( trainer = CustomSeq2SeqTrainer(
@ -56,19 +84,25 @@ def run_sft(
tokenizer=tokenizer, tokenizer=tokenizer,
data_collator=data_collator, data_collator=data_collator,
callbacks=callbacks, callbacks=callbacks,
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None, compute_metrics=(
ComputeMetrics(tokenizer) if training_args.predict_with_generate else None
),
**split_dataset(dataset, data_args, training_args), **split_dataset(dataset, data_args, training_args),
) )
# Keyword arguments for `model.generate` # Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict() gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids gen_kwargs["eos_token_id"] = [
tokenizer.eos_token_id
] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor() gen_kwargs["logits_processor"] = get_logits_processor()
# Training # Training
if training_args.do_train: if training_args.do_train:
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) train_result = trainer.train(
resume_from_checkpoint=training_args.resume_from_checkpoint
)
trainer.save_model() trainer.save_model()
trainer.log_metrics("train", train_result.metrics) trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics)
@ -79,19 +113,27 @@ def run_sft(
# Evaluation # Evaluation
if training_args.do_eval: if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs) metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled if (
training_args.predict_with_generate
): # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None) metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics) trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics) trainer.save_metrics("eval", metrics)
# Predict # Predict
if training_args.do_predict: if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs) predict_results = trainer.predict(
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled dataset, metric_key_prefix="predict", **gen_kwargs
)
if (
training_args.predict_with_generate
): # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None) predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics) trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics) trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results) trainer.save_predictions(predict_results)
# Create model card # Create model card
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args) create_modelcard_and_push(
trainer, model_args, data_args, training_args, finetuning_args
)

View File

@ -1,3 +0,0 @@
from .workflow import run_sft_mm
__all__ = ["run_sft_mm"]

View File

@ -1,61 +0,0 @@
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
import numpy as np
from ...extras.constants import IGNORE_INDEX
from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_available
if TYPE_CHECKING:
from transformers.tokenization_utils import PreTrainedTokenizer
if is_jieba_available():
import jieba # type: ignore
if is_nltk_available():
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
if is_rouge_available():
from rouge_chinese import Rouge
@dataclass
class ComputeMetrics:
r"""
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
"""
tokenizer: "PreTrainedTokenizer"
def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
r"""
Uses the model predictions to compute metrics.
"""
preds, labels = eval_preds
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
for pred, label in zip(decoded_preds, decoded_labels):
hypothesis = list(jieba.cut(pred))
reference = list(jieba.cut(label))
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
else:
rouge = Rouge()
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
result = scores[0]
for k, v in result.items():
score_dict[k].append(round(v["f"] * 100, 4))
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
return {k: float(np.mean(v)) for k, v in score_dict.items()}

View File

@ -1,44 +0,0 @@
import json
import os
from types import MethodType
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from transformers import Seq2SeqTrainer, Trainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..utils import create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
from transformers.trainer import PredictionOutput
from peft import PeftModelForCausalLM
from ...hparams import FinetuningArguments
logger = get_logger(__name__)
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
r"""
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
"""
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)

View File

@ -1,127 +0,0 @@
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
import os
from typing import TYPE_CHECKING, List, Optional
from ...data import get_dataset
from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss
from ...model import load_processor, load_model
from ..utils import create_modelcard_and_push
from .metric import ComputeMetrics
from .trainer import CustomSeq2SeqTrainer
from transformers import DataCollatorForSeq2Seq
from ...extras.constants import IGNORE_INDEX
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import (
DataArguments,
FinetuningArguments,
GeneratingArguments,
ModelArguments,
)
def run_sft_mm(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
processor = load_processor(model_args)
tokenizer = processor.tokenizer
dataset = get_dataset(
tokenizer, model_args, data_args, training_args, "sft", processor
)
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(
model, "_hf_peft_config_loaded", True
) # hack here: make model compatible with prediction
train_dataset = dataset
eval_dataset = dataset
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
pad_to_multiple_of=(
8 if tokenizer.padding_side == "right" else None
), # for shift short attention
label_pad_token_id=(
IGNORE_INDEX
if data_args.ignore_pad_token_for_loss
else tokenizer.pad_token_id
),
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = (
training_args.generation_max_length or data_args.cutoff_len
)
training_args.generation_num_beams = (
data_args.eval_num_beams or training_args.generation_num_beams
)
training_args.remove_unused_columns = False
# Initialize our Trainer
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
compute_metrics=(
ComputeMetrics(tokenizer) if training_args.predict_with_generate else None
),
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [
tokenizer.eos_token_id
] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
# Training
if training_args.do_train:
train_result = trainer.train(
resume_from_checkpoint=training_args.resume_from_checkpoint
)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if (
training_args.predict_with_generate
): # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(
dataset, metric_key_prefix="predict", **gen_kwargs
)
if (
training_args.predict_with_generate
): # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
create_modelcard_and_push(
trainer, model_args, data_args, training_args, finetuning_args
)

View File

@ -14,7 +14,6 @@ from .ppo import run_ppo
from .pt import run_pt from .pt import run_pt
from .rm import run_rm from .rm import run_rm
from .sft import run_sft from .sft import run_sft
from .sftmm import run_sft_mm
if TYPE_CHECKING: if TYPE_CHECKING:
from transformers import TrainerCallback from transformers import TrainerCallback
@ -30,8 +29,6 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
run_pt(model_args, data_args, training_args, finetuning_args, callbacks) run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "sft": elif finetuning_args.stage == "sft":
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks) run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "sft_mm":
run_sft_mm(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
elif finetuning_args.stage == "rm": elif finetuning_args.stage == "rm":
run_rm(model_args, data_args, training_args, finetuning_args, callbacks) run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
elif finetuning_args.stage == "ppo": elif finetuning_args.stage == "ppo":