add some
This commit is contained in:
parent
eefcd105c1
commit
94ad744941
|
@ -1,11 +1,10 @@
|
||||||
from .loader import load_config, load_model, load_tokenizer, load_processor
|
from .loader import load_config, load_model, load_tokenizer
|
||||||
from .utils.misc import find_all_linear_modules, load_valuehead_params
|
from .utils.misc import find_all_linear_modules, load_valuehead_params
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
"load_config",
|
"load_config",
|
||||||
"load_model",
|
"load_model",
|
||||||
"load_tokenizer",
|
"load_tokenizer",
|
||||||
"load_processor",
|
|
||||||
"load_valuehead_params",
|
"load_valuehead_params",
|
||||||
"find_all_linear_modules",
|
"find_all_linear_modules",
|
||||||
]
|
]
|
||||||
|
|
|
@ -40,7 +40,9 @@ def _get_init_kwargs(model_args: "ModelArguments") -> Dict[str, Any]:
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
def load_tokenizer(
|
||||||
|
model_args: "ModelArguments",
|
||||||
|
) -> Dict[str, Union["PreTrainedTokenizer", "AutoProcesser"]]:
|
||||||
r"""
|
r"""
|
||||||
Loads pretrained tokenizer.
|
Loads pretrained tokenizer.
|
||||||
|
|
||||||
|
@ -78,33 +80,25 @@ def load_tokenizer(model_args: "ModelArguments") -> "PreTrainedTokenizer":
|
||||||
)
|
)
|
||||||
|
|
||||||
patch_tokenizer(tokenizer)
|
patch_tokenizer(tokenizer)
|
||||||
return tokenizer
|
tokenizer_modules = {"tokenizer": tokenizer, "processor": None}
|
||||||
|
if model_args.use_mllm:
|
||||||
|
try:
|
||||||
def load_processor(model_args: "ModelArguments") -> "AutoProcessor":
|
processor = AutoProcessor.from_pretrained(
|
||||||
r"""
|
model_args.model_name_or_path,
|
||||||
Loads processor. Must before load_model.
|
use_fast=model_args.use_fast_tokenizer,
|
||||||
|
split_special_tokens=model_args.split_special_tokens,
|
||||||
Note: including inplace operation of model_args.
|
padding_side="right",
|
||||||
"""
|
**init_kwargs,
|
||||||
init_kwargs = _get_init_kwargs(model_args)
|
)
|
||||||
try:
|
except Exception: # try the fast one
|
||||||
processor = AutoProcessor.from_pretrained(
|
processor = AutoProcessor.from_pretrained(
|
||||||
model_args.model_name_or_path,
|
model_args.model_name_or_path,
|
||||||
use_fast=model_args.use_fast_tokenizer,
|
use_fast=True,
|
||||||
split_special_tokens=model_args.split_special_tokens,
|
padding_side="right",
|
||||||
padding_side="right",
|
**init_kwargs,
|
||||||
**init_kwargs,
|
)
|
||||||
)
|
tokenizer_modules["processor"] = processor
|
||||||
except Exception: # try the fast one
|
return tokenizer_modules
|
||||||
processor = AutoProcessor.from_pretrained(
|
|
||||||
model_args.model_name_or_path,
|
|
||||||
use_fast=True,
|
|
||||||
padding_side="right",
|
|
||||||
**init_kwargs,
|
|
||||||
)
|
|
||||||
|
|
||||||
return processor
|
|
||||||
|
|
||||||
|
|
||||||
def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
|
def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
|
||||||
|
|
|
@ -17,7 +17,12 @@ from .trainer import CustomSeq2SeqTrainer
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||||
|
|
||||||
from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
from ...hparams import (
|
||||||
|
DataArguments,
|
||||||
|
FinetuningArguments,
|
||||||
|
GeneratingArguments,
|
||||||
|
ModelArguments,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def run_sft(
|
def run_sft(
|
||||||
|
@ -28,25 +33,48 @@ def run_sft(
|
||||||
generating_args: "GeneratingArguments",
|
generating_args: "GeneratingArguments",
|
||||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||||
):
|
):
|
||||||
tokenizer = load_tokenizer(model_args)
|
tokenizer_modules = load_tokenizer(model_args)
|
||||||
dataset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
tokenizer = tokenizer_modules["tokenizer"]
|
||||||
|
processor = tokenizer_modules["processor"]
|
||||||
|
dataset = get_dataset(
|
||||||
|
tokenizer,
|
||||||
|
model_args,
|
||||||
|
data_args,
|
||||||
|
training_args,
|
||||||
|
stage="sft",
|
||||||
|
processor=processor,
|
||||||
|
)
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||||
|
|
||||||
if training_args.predict_with_generate:
|
if training_args.predict_with_generate:
|
||||||
tokenizer.padding_side = "left" # use left-padding in generation
|
tokenizer.padding_side = "left" # use left-padding in generation
|
||||||
|
|
||||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
setattr(
|
||||||
|
model, "_hf_peft_config_loaded", True
|
||||||
|
) # hack here: make model compatible with prediction
|
||||||
|
|
||||||
data_collator = DataCollatorForSeq2Seq(
|
data_collator = DataCollatorForSeq2Seq(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention
|
pad_to_multiple_of=(
|
||||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
8 if tokenizer.padding_side == "right" else None
|
||||||
|
), # for shift short attention
|
||||||
|
label_pad_token_id=(
|
||||||
|
IGNORE_INDEX
|
||||||
|
if data_args.ignore_pad_token_for_loss
|
||||||
|
else tokenizer.pad_token_id
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
# Override the decoding parameters of Seq2SeqTrainer
|
# Override the decoding parameters of Seq2SeqTrainer
|
||||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
training_args.generation_max_length = (
|
||||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
training_args.generation_max_length or data_args.cutoff_len
|
||||||
|
)
|
||||||
|
training_args.generation_num_beams = (
|
||||||
|
data_args.eval_num_beams or training_args.generation_num_beams
|
||||||
|
)
|
||||||
|
if model_args.use_mllm:
|
||||||
|
training_args.remove_unused_columns = False
|
||||||
|
|
||||||
# Initialize our Trainer
|
# Initialize our Trainer
|
||||||
trainer = CustomSeq2SeqTrainer(
|
trainer = CustomSeq2SeqTrainer(
|
||||||
|
@ -56,19 +84,25 @@ def run_sft(
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
callbacks=callbacks,
|
callbacks=callbacks,
|
||||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else None,
|
compute_metrics=(
|
||||||
|
ComputeMetrics(tokenizer) if training_args.predict_with_generate else None
|
||||||
|
),
|
||||||
**split_dataset(dataset, data_args, training_args),
|
**split_dataset(dataset, data_args, training_args),
|
||||||
)
|
)
|
||||||
|
|
||||||
# Keyword arguments for `model.generate`
|
# Keyword arguments for `model.generate`
|
||||||
gen_kwargs = generating_args.to_dict()
|
gen_kwargs = generating_args.to_dict()
|
||||||
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
|
gen_kwargs["eos_token_id"] = [
|
||||||
|
tokenizer.eos_token_id
|
||||||
|
] + tokenizer.additional_special_tokens_ids
|
||||||
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
|
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
|
||||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
gen_kwargs["logits_processor"] = get_logits_processor()
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
if training_args.do_train:
|
if training_args.do_train:
|
||||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
train_result = trainer.train(
|
||||||
|
resume_from_checkpoint=training_args.resume_from_checkpoint
|
||||||
|
)
|
||||||
trainer.save_model()
|
trainer.save_model()
|
||||||
trainer.log_metrics("train", train_result.metrics)
|
trainer.log_metrics("train", train_result.metrics)
|
||||||
trainer.save_metrics("train", train_result.metrics)
|
trainer.save_metrics("train", train_result.metrics)
|
||||||
|
@ -79,19 +113,27 @@ def run_sft(
|
||||||
# Evaluation
|
# Evaluation
|
||||||
if training_args.do_eval:
|
if training_args.do_eval:
|
||||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||||
if training_args.predict_with_generate: # eval_loss will be wrong if predict_with_generate is enabled
|
if (
|
||||||
|
training_args.predict_with_generate
|
||||||
|
): # eval_loss will be wrong if predict_with_generate is enabled
|
||||||
metrics.pop("eval_loss", None)
|
metrics.pop("eval_loss", None)
|
||||||
trainer.log_metrics("eval", metrics)
|
trainer.log_metrics("eval", metrics)
|
||||||
trainer.save_metrics("eval", metrics)
|
trainer.save_metrics("eval", metrics)
|
||||||
|
|
||||||
# Predict
|
# Predict
|
||||||
if training_args.do_predict:
|
if training_args.do_predict:
|
||||||
predict_results = trainer.predict(dataset, metric_key_prefix="predict", **gen_kwargs)
|
predict_results = trainer.predict(
|
||||||
if training_args.predict_with_generate: # predict_loss will be wrong if predict_with_generate is enabled
|
dataset, metric_key_prefix="predict", **gen_kwargs
|
||||||
|
)
|
||||||
|
if (
|
||||||
|
training_args.predict_with_generate
|
||||||
|
): # predict_loss will be wrong if predict_with_generate is enabled
|
||||||
predict_results.metrics.pop("predict_loss", None)
|
predict_results.metrics.pop("predict_loss", None)
|
||||||
trainer.log_metrics("predict", predict_results.metrics)
|
trainer.log_metrics("predict", predict_results.metrics)
|
||||||
trainer.save_metrics("predict", predict_results.metrics)
|
trainer.save_metrics("predict", predict_results.metrics)
|
||||||
trainer.save_predictions(predict_results)
|
trainer.save_predictions(predict_results)
|
||||||
|
|
||||||
# Create model card
|
# Create model card
|
||||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
create_modelcard_and_push(
|
||||||
|
trainer, model_args, data_args, training_args, finetuning_args
|
||||||
|
)
|
||||||
|
|
|
@ -1,3 +0,0 @@
|
||||||
from .workflow import run_sft_mm
|
|
||||||
|
|
||||||
__all__ = ["run_sft_mm"]
|
|
|
@ -1,61 +0,0 @@
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import TYPE_CHECKING, Dict, Sequence, Tuple, Union
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
|
||||||
from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_available
|
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
|
||||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
||||||
|
|
||||||
if is_jieba_available():
|
|
||||||
import jieba # type: ignore
|
|
||||||
|
|
||||||
if is_nltk_available():
|
|
||||||
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
|
|
||||||
|
|
||||||
if is_rouge_available():
|
|
||||||
from rouge_chinese import Rouge
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ComputeMetrics:
|
|
||||||
r"""
|
|
||||||
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
|
|
||||||
"""
|
|
||||||
|
|
||||||
tokenizer: "PreTrainedTokenizer"
|
|
||||||
|
|
||||||
def __call__(self, eval_preds: Sequence[Union[np.ndarray, Tuple[np.ndarray]]]) -> Dict[str, float]:
|
|
||||||
r"""
|
|
||||||
Uses the model predictions to compute metrics.
|
|
||||||
"""
|
|
||||||
preds, labels = eval_preds
|
|
||||||
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
|
|
||||||
|
|
||||||
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
|
|
||||||
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
|
|
||||||
|
|
||||||
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
|
|
||||||
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
|
|
||||||
|
|
||||||
for pred, label in zip(decoded_preds, decoded_labels):
|
|
||||||
hypothesis = list(jieba.cut(pred))
|
|
||||||
reference = list(jieba.cut(label))
|
|
||||||
|
|
||||||
if len(" ".join(hypothesis).split()) == 0 or len(" ".join(reference).split()) == 0:
|
|
||||||
result = {"rouge-1": {"f": 0.0}, "rouge-2": {"f": 0.0}, "rouge-l": {"f": 0.0}}
|
|
||||||
else:
|
|
||||||
rouge = Rouge()
|
|
||||||
scores = rouge.get_scores(" ".join(hypothesis), " ".join(reference))
|
|
||||||
result = scores[0]
|
|
||||||
|
|
||||||
for k, v in result.items():
|
|
||||||
score_dict[k].append(round(v["f"] * 100, 4))
|
|
||||||
|
|
||||||
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
|
||||||
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
|
||||||
|
|
||||||
return {k: float(np.mean(v)) for k, v in score_dict.items()}
|
|
|
@ -1,44 +0,0 @@
|
||||||
import json
|
|
||||||
import os
|
|
||||||
from types import MethodType
|
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from transformers import Seq2SeqTrainer, Trainer
|
|
||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
|
||||||
from ...extras.logging import get_logger
|
|
||||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
|
||||||
from transformers.trainer import PredictionOutput
|
|
||||||
from peft import PeftModelForCausalLM
|
|
||||||
from ...hparams import FinetuningArguments
|
|
||||||
|
|
||||||
logger = get_logger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|
||||||
r"""
|
|
||||||
Inherits Seq2SeqTrainer to compute generative metrics such as BLEU and ROUGE.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, finetuning_args: "FinetuningArguments", **kwargs) -> None:
|
|
||||||
super().__init__(**kwargs)
|
|
||||||
self.finetuning_args = finetuning_args
|
|
||||||
if finetuning_args.use_badam:
|
|
||||||
from badam import clip_grad_norm_for_sparse_tensor
|
|
||||||
|
|
||||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
|
||||||
|
|
||||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
|
||||||
if self.optimizer is None:
|
|
||||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
|
||||||
return super().create_optimizer()
|
|
||||||
|
|
||||||
def create_scheduler(
|
|
||||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
|
||||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
|
||||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
|
||||||
return super().create_scheduler(num_training_steps, optimizer)
|
|
|
@ -1,127 +0,0 @@
|
||||||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
|
|
||||||
import os
|
|
||||||
from typing import TYPE_CHECKING, List, Optional
|
|
||||||
from ...data import get_dataset
|
|
||||||
from ...extras.misc import get_logits_processor
|
|
||||||
from ...extras.ploting import plot_loss
|
|
||||||
from ...model import load_processor, load_model
|
|
||||||
from ..utils import create_modelcard_and_push
|
|
||||||
from .metric import ComputeMetrics
|
|
||||||
from .trainer import CustomSeq2SeqTrainer
|
|
||||||
from transformers import DataCollatorForSeq2Seq
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
|
||||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
|
||||||
|
|
||||||
from ...hparams import (
|
|
||||||
DataArguments,
|
|
||||||
FinetuningArguments,
|
|
||||||
GeneratingArguments,
|
|
||||||
ModelArguments,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def run_sft_mm(
|
|
||||||
model_args: "ModelArguments",
|
|
||||||
data_args: "DataArguments",
|
|
||||||
training_args: "Seq2SeqTrainingArguments",
|
|
||||||
finetuning_args: "FinetuningArguments",
|
|
||||||
generating_args: "GeneratingArguments",
|
|
||||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
|
||||||
):
|
|
||||||
processor = load_processor(model_args)
|
|
||||||
tokenizer = processor.tokenizer
|
|
||||||
dataset = get_dataset(
|
|
||||||
tokenizer, model_args, data_args, training_args, "sft", processor
|
|
||||||
)
|
|
||||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
|
||||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
|
||||||
setattr(
|
|
||||||
model, "_hf_peft_config_loaded", True
|
|
||||||
) # hack here: make model compatible with prediction
|
|
||||||
train_dataset = dataset
|
|
||||||
eval_dataset = dataset
|
|
||||||
data_collator = DataCollatorForSeq2Seq(
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
pad_to_multiple_of=(
|
|
||||||
8 if tokenizer.padding_side == "right" else None
|
|
||||||
), # for shift short attention
|
|
||||||
label_pad_token_id=(
|
|
||||||
IGNORE_INDEX
|
|
||||||
if data_args.ignore_pad_token_for_loss
|
|
||||||
else tokenizer.pad_token_id
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
# Override the decoding parameters of Seq2SeqTrainer
|
|
||||||
training_args.generation_max_length = (
|
|
||||||
training_args.generation_max_length or data_args.cutoff_len
|
|
||||||
)
|
|
||||||
training_args.generation_num_beams = (
|
|
||||||
data_args.eval_num_beams or training_args.generation_num_beams
|
|
||||||
)
|
|
||||||
training_args.remove_unused_columns = False
|
|
||||||
|
|
||||||
# Initialize our Trainer
|
|
||||||
trainer = CustomSeq2SeqTrainer(
|
|
||||||
model=model,
|
|
||||||
args=training_args,
|
|
||||||
finetuning_args=finetuning_args,
|
|
||||||
tokenizer=tokenizer,
|
|
||||||
data_collator=data_collator,
|
|
||||||
callbacks=callbacks,
|
|
||||||
compute_metrics=(
|
|
||||||
ComputeMetrics(tokenizer) if training_args.predict_with_generate else None
|
|
||||||
),
|
|
||||||
train_dataset=train_dataset,
|
|
||||||
eval_dataset=eval_dataset,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Keyword arguments for `model.generate`
|
|
||||||
gen_kwargs = generating_args.to_dict()
|
|
||||||
gen_kwargs["eos_token_id"] = [
|
|
||||||
tokenizer.eos_token_id
|
|
||||||
] + tokenizer.additional_special_tokens_ids
|
|
||||||
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
|
|
||||||
gen_kwargs["logits_processor"] = get_logits_processor()
|
|
||||||
|
|
||||||
# Training
|
|
||||||
if training_args.do_train:
|
|
||||||
train_result = trainer.train(
|
|
||||||
resume_from_checkpoint=training_args.resume_from_checkpoint
|
|
||||||
)
|
|
||||||
trainer.save_model()
|
|
||||||
trainer.log_metrics("train", train_result.metrics)
|
|
||||||
trainer.save_metrics("train", train_result.metrics)
|
|
||||||
trainer.save_state()
|
|
||||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
|
||||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
|
|
||||||
|
|
||||||
# Evaluation
|
|
||||||
if training_args.do_eval:
|
|
||||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
|
||||||
if (
|
|
||||||
training_args.predict_with_generate
|
|
||||||
): # eval_loss will be wrong if predict_with_generate is enabled
|
|
||||||
metrics.pop("eval_loss", None)
|
|
||||||
trainer.log_metrics("eval", metrics)
|
|
||||||
trainer.save_metrics("eval", metrics)
|
|
||||||
|
|
||||||
# Predict
|
|
||||||
if training_args.do_predict:
|
|
||||||
predict_results = trainer.predict(
|
|
||||||
dataset, metric_key_prefix="predict", **gen_kwargs
|
|
||||||
)
|
|
||||||
if (
|
|
||||||
training_args.predict_with_generate
|
|
||||||
): # predict_loss will be wrong if predict_with_generate is enabled
|
|
||||||
predict_results.metrics.pop("predict_loss", None)
|
|
||||||
trainer.log_metrics("predict", predict_results.metrics)
|
|
||||||
trainer.save_metrics("predict", predict_results.metrics)
|
|
||||||
trainer.save_predictions(predict_results)
|
|
||||||
|
|
||||||
# Create model card
|
|
||||||
create_modelcard_and_push(
|
|
||||||
trainer, model_args, data_args, training_args, finetuning_args
|
|
||||||
)
|
|
|
@ -14,7 +14,6 @@ from .ppo import run_ppo
|
||||||
from .pt import run_pt
|
from .pt import run_pt
|
||||||
from .rm import run_rm
|
from .rm import run_rm
|
||||||
from .sft import run_sft
|
from .sft import run_sft
|
||||||
from .sftmm import run_sft_mm
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
from transformers import TrainerCallback
|
from transformers import TrainerCallback
|
||||||
|
@ -30,8 +29,6 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["Tra
|
||||||
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||||
elif finetuning_args.stage == "sft":
|
elif finetuning_args.stage == "sft":
|
||||||
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
||||||
elif finetuning_args.stage == "sft_mm":
|
|
||||||
run_sft_mm(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
|
||||||
elif finetuning_args.stage == "rm":
|
elif finetuning_args.stage == "rm":
|
||||||
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
|
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||||
elif finetuning_args.stage == "ppo":
|
elif finetuning_args.stage == "ppo":
|
||||||
|
|
Loading…
Reference in New Issue