release v0.6.2
This commit is contained in:
parent
51d0a1a19e
commit
9d4c949461
|
@ -305,7 +305,7 @@ cd LLaMA-Factory
|
|||
pip install -e .[metrics]
|
||||
```
|
||||
|
||||
Extra dependencies available: deepspeed, metrics, unsloth, galore, vllm, bitsandbytes, gptq, awq, aqlm, qwen, quality
|
||||
Extra dependencies available: deepspeed, metrics, unsloth, galore, vllm, bitsandbytes, gptq, awq, aqlm, qwen, modelscope, quality
|
||||
|
||||
<details><summary>For Windows users</summary>
|
||||
|
||||
|
|
|
@ -305,7 +305,7 @@ cd LLaMA-Factory
|
|||
pip install -e .[metrics]
|
||||
```
|
||||
|
||||
可选的额外依赖项:deepspeed、metrics、unsloth、galore、vllm、bitsandbytes、gptq、awq、aqlm、qwen、quality
|
||||
可选的额外依赖项:deepspeed、metrics、unsloth、galore、vllm、bitsandbytes、gptq、awq、aqlm、qwen、modelscope、quality
|
||||
|
||||
<details><summary>Windows 用户指南</summary>
|
||||
|
||||
|
|
1
setup.py
1
setup.py
|
@ -30,6 +30,7 @@ extra_require = {
|
|||
"awq": ["autoawq"],
|
||||
"aqlm": ["aqlm[gpu]>=1.1.0"],
|
||||
"qwen": ["tiktoken", "transformers_stream_generator"],
|
||||
"modelscope": ["modelscope"],
|
||||
"quality": ["ruff"],
|
||||
}
|
||||
|
||||
|
|
|
@ -7,5 +7,5 @@ from .train import export_model, run_exp
|
|||
from .webui import create_ui, create_web_demo
|
||||
|
||||
|
||||
__version__ = "0.6.2.dev0"
|
||||
__version__ = "0.6.2"
|
||||
__all__ = ["create_app", "ChatModel", "Evaluator", "export_model", "run_exp", "create_ui", "create_web_demo"]
|
||||
|
|
|
@ -6,7 +6,7 @@ from datasets import load_dataset, load_from_disk
|
|||
|
||||
from ..extras.constants import FILEEXT2TYPE
|
||||
from ..extras.logging import get_logger
|
||||
from ..extras.misc import is_path_available
|
||||
from ..extras.misc import has_tokenized_data
|
||||
from .aligner import align_dataset
|
||||
from .parser import get_dataset_list
|
||||
from .preprocess import get_preprocess_and_print_func
|
||||
|
@ -81,7 +81,9 @@ def load_single_dataset(
|
|||
cache_dir=cache_dir,
|
||||
token=model_args.ms_hub_token,
|
||||
use_streaming=(data_args.streaming and (dataset_attr.load_from != "file")),
|
||||
).to_hf_dataset()
|
||||
)
|
||||
if isinstance(dataset, MsDataset):
|
||||
dataset = dataset.to_hf_dataset()
|
||||
except ImportError:
|
||||
raise ImportError("Please install modelscope via `pip install modelscope -U`")
|
||||
else:
|
||||
|
@ -125,7 +127,7 @@ def get_dataset(
|
|||
|
||||
# Load tokenized dataset
|
||||
if data_args.tokenized_path is not None:
|
||||
if not is_path_available(data_args.tokenized_path):
|
||||
if has_tokenized_data(data_args.tokenized_path):
|
||||
logger.warning("Loading dataset from disk will ignore other data arguments.")
|
||||
dataset = load_from_disk(data_args.tokenized_path)
|
||||
logger.info("Loaded tokenized dataset from {}.".format(data_args.tokenized_path))
|
||||
|
|
|
@ -53,12 +53,19 @@ class DatasetAttr:
|
|||
|
||||
|
||||
def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")] if data_args.dataset is not None else []
|
||||
if data_args.dataset is not None:
|
||||
dataset_names = [ds.strip() for ds in data_args.dataset.split(",")]
|
||||
else:
|
||||
dataset_names = []
|
||||
|
||||
if data_args.dataset_dir == "ONLINE":
|
||||
dataset_info = None
|
||||
else:
|
||||
try:
|
||||
with open(os.path.join(data_args.dataset_dir, DATA_CONFIG), "r") as f:
|
||||
dataset_info = json.load(f)
|
||||
except Exception as err:
|
||||
if data_args.dataset is not None:
|
||||
if len(dataset_names) != 0:
|
||||
raise ValueError(
|
||||
"Cannot open {} due to {}.".format(os.path.join(data_args.dataset_dir, DATA_CONFIG), str(err))
|
||||
)
|
||||
|
@ -69,6 +76,12 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
|
|||
|
||||
dataset_list: List[DatasetAttr] = []
|
||||
for name in dataset_names:
|
||||
if dataset_info is None:
|
||||
load_from = "ms_hub" if use_modelscope() else "hf_hub"
|
||||
dataset_attr = DatasetAttr(load_from, dataset_name=name)
|
||||
dataset_list.append(dataset_attr)
|
||||
continue
|
||||
|
||||
if name not in dataset_info:
|
||||
raise ValueError("Undefined dataset {} in {}.".format(name, DATA_CONFIG))
|
||||
|
||||
|
|
|
@ -193,16 +193,11 @@ def infer_optim_dtype(model_dtype: torch.dtype) -> torch.dtype:
|
|||
return torch.float32
|
||||
|
||||
|
||||
def is_path_available(path: os.PathLike) -> bool:
|
||||
def has_tokenized_data(path: os.PathLike) -> bool:
|
||||
r"""
|
||||
Checks if the path is empty or not exist.
|
||||
Checks if the path has a tokenized dataset.
|
||||
"""
|
||||
if not os.path.exists(path):
|
||||
return True
|
||||
elif os.path.isdir(path) and not os.listdir(path):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
return os.path.isdir(path) and len(os.listdir(path)) > 0
|
||||
|
||||
|
||||
def torch_gc() -> None:
|
||||
|
|
|
@ -139,7 +139,6 @@ def init_adapter(
|
|||
"lora_alpha": finetuning_args.lora_alpha,
|
||||
"lora_dropout": finetuning_args.lora_dropout,
|
||||
"use_rslora": finetuning_args.use_rslora,
|
||||
"modules_to_save": finetuning_args.additional_target,
|
||||
}
|
||||
|
||||
if model_args.use_unsloth:
|
||||
|
@ -151,6 +150,7 @@ def init_adapter(
|
|||
lora_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
modules_to_save=finetuning_args.additional_target,
|
||||
use_dora=finetuning_args.use_dora,
|
||||
**peft_kwargs,
|
||||
)
|
||||
|
|
|
@ -18,7 +18,7 @@ def create_eval_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|||
|
||||
with gr.Row():
|
||||
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
|
||||
dataset = gr.Dropdown(multiselect=True, scale=4)
|
||||
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4)
|
||||
preview_elems = create_preview_box(dataset_dir, dataset)
|
||||
|
||||
input_elems.update({dataset_dir, dataset})
|
||||
|
|
|
@ -23,7 +23,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|||
choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=1
|
||||
)
|
||||
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=1)
|
||||
dataset = gr.Dropdown(multiselect=True, scale=4, allow_custom_value=True)
|
||||
dataset = gr.Dropdown(multiselect=True, allow_custom_value=True, scale=4)
|
||||
preview_elems = create_preview_box(dataset_dir, dataset)
|
||||
|
||||
input_elems.update({training_stage, dataset_dir, dataset})
|
||||
|
|
Loading…
Reference in New Issue