fix lora target

This commit is contained in:
hiyouga 2023-09-09 17:04:45 +08:00
parent bca1a247bc
commit a51b7c98ac
7 changed files with 63 additions and 43 deletions

View File

@ -1,7 +1,7 @@
import torch
from typing import Any, Dict, Generator, List, Optional, Tuple
from threading import Thread
from transformers import TextIteratorStreamer
from transformers import GenerationConfig, TextIteratorStreamer
from llmtuner.extras.misc import dispatch_model, get_logits_processor
from llmtuner.extras.template import get_template_and_fix_tokenizer
@ -40,26 +40,30 @@ class ChatModel:
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
gen_kwargs = self.generating_args.to_dict()
gen_kwargs.update(dict(
input_ids=input_ids,
do_sample=do_sample if do_sample is not None else gen_kwargs["do_sample"],
temperature=temperature or gen_kwargs["temperature"],
top_p=top_p or gen_kwargs["top_p"],
top_k=top_k or gen_kwargs["top_k"],
repetition_penalty=repetition_penalty or gen_kwargs["repetition_penalty"],
generating_args = self.generating_args.to_dict()
generating_args.update(dict(
do_sample=do_sample if do_sample is not None else generating_args["do_sample"],
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
pad_token_id=self.tokenizer.pad_token_id,
logits_processor=get_logits_processor()
pad_token_id=self.tokenizer.pad_token_id
))
if max_length:
gen_kwargs.pop("max_new_tokens", None)
gen_kwargs["max_length"] = max_length
generating_args.pop("max_new_tokens", None)
generating_args["max_length"] = max_length
if max_new_tokens:
gen_kwargs.pop("max_length", None)
gen_kwargs["max_new_tokens"] = max_new_tokens
generating_args.pop("max_length", None)
generating_args["max_new_tokens"] = max_new_tokens
gen_kwargs = dict(
inputs=input_ids,
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor()
)
return gen_kwargs, prompt_length

View File

@ -74,7 +74,7 @@ def preprocess_dataset(
if len(input_ids) + len(source_ids) + len(target_ids) > max_length:
break
if turn_idx != 0 and template.efficient_eos: # used in baichuan, qwen and gpt2 models
if turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
@ -104,6 +104,9 @@ def preprocess_dataset(
if len(target_ids) > data_args.max_target_length:
target_ids = target_ids[:data_args.max_target_length]
if template.efficient_eos:
target_ids += [tokenizer.eos_token_id]
model_inputs["input_ids"].append(source_ids)
model_inputs["attention_mask"].append([1] * len(source_ids))
model_inputs["labels"].append(target_ids)
@ -124,6 +127,10 @@ def preprocess_dataset(
if len(rejected_ids) > data_args.max_target_length:
rejected_ids = rejected_ids[:data_args.max_target_length]
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
model_inputs["prompt_ids"].append(prompt_ids)
model_inputs["chosen_ids"].append(chosen_ids)
model_inputs["rejected_ids"].append(rejected_ids)

View File

@ -77,13 +77,13 @@ class Template:
) -> Tuple[List[int], List[int]]:
if tokenizer.bos_token_id is not None and getattr(tokenizer, "add_bos_token", True):
bos_ids = [tokenizer.bos_token_id]
else: # baichuan, qwen and gpt2 models has no bos token
else: # baichuan, qwen and gpt2 models have no bos token
bos_ids = []
if tokenizer.eos_token_id is None:
raise ValueError("EOS token is required.")
if self.efficient_eos: # used in baichuan, qwen and gpt2 models
if self.efficient_eos: # used in baichuan, qwen, chatglm, etc.
eos_ids = []
else:
eos_ids = [tokenizer.eos_token_id]

View File

@ -82,7 +82,7 @@ def init_adapter(
model = PeftModel.from_pretrained(model, latest_checkpoint, is_trainable=is_trainable)
if is_trainable and latest_checkpoint is None: # create new lora weights while training
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target == "all":
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
target_modules = find_all_linear_modules(model, model_args.quantization_bit)
else:
target_modules = finetuning_args.lora_target

View File

@ -20,7 +20,7 @@ def find_all_linear_modules(
module_names = set()
for name, module in model.named_modules():
if isinstance(module, linear_cls):
if output_layer_name not in name and isinstance(module, linear_cls):
module_names.add(name.split(".")[-1])
if output_layer_name in module_names:

View File

@ -2,9 +2,9 @@ import os
import math
import torch
from tqdm import tqdm
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
from transformers import TrainerState, TrainerControl
from transformers import GenerationConfig, TrainerState, TrainerControl
from trl import PPOTrainer
from trl.core import LengthSampler, PPODecorators, logprobs_from_logits
@ -78,10 +78,11 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
logger.info(f" Number of trainable parameters = {count_parameters(self.model)[0]}")
# Keyword arguments for `model.generate`
gen_kwargs = self.generating_args.to_dict()
gen_kwargs["eos_token_id"] = [self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = self.tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
generating_args = self.generating_args.to_dict()
generating_args.update(dict(
eos_token_id=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
pad_token_id=self.tokenizer.pad_token_id
))
length_sampler = LengthSampler(max_target_length // 2, max_target_length)
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
@ -103,7 +104,7 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
self.model.eval()
# Get inputs
queries, responses = self.get_inputs(batch, length_sampler, **gen_kwargs)
queries, responses = self.get_inputs(batch, length_sampler, generating_args)
self.tokenizer.padding_side = "right" # change padding side
rewards = self.get_rewards(queries, responses, unwrapped_model)
@ -152,32 +153,36 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
def get_inputs(
self,
batch: Dict[str, torch.Tensor],
length_sampler: Optional[Callable] = None,
**generation_kwargs
length_sampler: Callable,
generating_args: Dict[str, Any]
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
r"""
Generates model's responses given queries.
"""
if length_sampler is not None:
generation_kwargs["max_new_tokens"] = length_sampler()
generating_args["max_new_tokens"] = length_sampler()
gen_kwargs = dict(
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor(),
**batch
)
input_ids = batch["input_ids"]
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
response: torch.Tensor = unwrapped_model.generate(**batch, **generation_kwargs)
# Temporary hack to ensure the generation config is not initialized for each iteration of the evaluation loop
# Inspired by: https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/trainer_seq2seq.py#L273
if unwrapped_model.pretrained_model.generation_config._from_model_config:
unwrapped_model.pretrained_model.generation_config._from_model_config = False
response: torch.Tensor = unwrapped_model.generate(**gen_kwargs)
query, response = input_ids.detach().cpu(), response[:, input_ids.size(-1):].detach().cpu()
queries, responses = [], []
query, response = batch["input_ids"].detach().cpu(), response[:, batch["input_ids"].size(-1):].detach().cpu()
for i in range(len(query)):
query_length = (query[i] != self.tokenizer.pad_token_id).nonzero()[0]
response_index = (response[i] != self.tokenizer.pad_token_id).nonzero()
if len(response_index) == 0:
response_length = 1 # allow empty response
elif self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
response_length = response_index[-1] + 2 # save the EOS token
else:
response_length = response_index[-1] + 1
queries.append(query[i, query_length:]) # remove padding from left
responses.append(response[i, :response_length]) # remove padding from right
@ -204,7 +209,7 @@ class PPOPeftTrainer(PPOTrainer, PeftTrainer):
rewards = []
for i in range(values.size(0)):
end_index = batch["attention_mask"][i].nonzero()[-1]
end_index = batch["attention_mask"][i].nonzero()[-1] # use the score on the EOS token
rewards.append(values[i, end_index].float().detach().cpu()) # use fp32 type
replace_model(unwrapped_model, target="default")

View File

@ -69,13 +69,17 @@ class PairwisePeftTrainer(PeftTrainer):
assert div_index > 0
chosen_trunc_rewards = chosen_rewards[i, div_index:end_index]
rejected_trunc_rewards = rejected_rewards[i, div_index:end_index]
chosen_scores.append(chosen_trunc_rewards[-1]) # use the end score for inference
rejected_scores.append(rejected_trunc_rewards[-1])
if return_outputs: # use the score on the EOS token for inference
chosen_scores.append(chosen_rewards[i, chosen_length-1])
rejected_scores.append(rejected_rewards[i, rejected_length-1])
loss += -torch.nn.functional.logsigmoid(chosen_trunc_rewards - rejected_trunc_rewards).mean()
loss = loss / batch_size
chosen_scores, rejected_scores = torch.stack(chosen_scores), torch.stack(rejected_scores)
return (loss, [loss, chosen_scores, rejected_scores]) if return_outputs else loss
if return_outputs:
chosen_scores, rejected_scores = torch.stack(chosen_scores), torch.stack(rejected_scores)
return loss, [loss, chosen_scores, rejected_scores]
return loss
def save_predictions(
self,