Merge pull request #511 from hiyouga/feature-autoTemplate
add template match and stage in webui
This commit is contained in:
commit
adb0f186e9
|
@ -10,6 +10,8 @@ LAYERNORM_NAMES = ["norm", "ln_f", "ln_attn", "ln_mlp"]
|
|||
|
||||
METHODS = ["full", "freeze", "lora"]
|
||||
|
||||
STAGES = ["Supervised Finetuning", "Reward Modeling", "PPO", "DPO", "Pretraining"]
|
||||
|
||||
SUPPORTED_MODELS = {
|
||||
"LLaMA-7B": "huggyllama/llama-7b",
|
||||
"LLaMA-13B": "huggyllama/llama-13b",
|
||||
|
@ -54,3 +56,31 @@ DEFAULT_MODULE = {
|
|||
"XVERSE": "q_proj,v_proj",
|
||||
"ChatGLM2": "query_key_value"
|
||||
}
|
||||
|
||||
DEFAULT_TEMPLATE = {
|
||||
"LLaMA2": "llama2",
|
||||
"Baichuan": "baichuan",
|
||||
"InternLM": "intern",
|
||||
"Qwen": "chatml",
|
||||
"ChatGLM2": "chatglm2"
|
||||
}
|
||||
|
||||
# huggingface model name prefix 2 template
|
||||
DEFAULT_TEMPLATE_WITH_CUSTOM_MODEL = {
|
||||
"Llama-2": "llama2",
|
||||
"chinese-alpaca-2": "llama2_zh",
|
||||
"alpaca-7b-wdiff": "alpaca",
|
||||
"vicuna": "vicuna",
|
||||
"BELLE": "belle",
|
||||
"Chinese-LLaMA-2": "linly",
|
||||
"BiLLa": "billa",
|
||||
"Ziya": "ziya",
|
||||
"aquilachat": "aquila",
|
||||
"internlm": "intern",
|
||||
"aquilachat": "aquila",
|
||||
"internlm": "intern",
|
||||
"Baichuan":"baichuan",
|
||||
"starchat":"starchat",
|
||||
"Qwen":"chatml",
|
||||
"chatglm2":"chatglm2"
|
||||
}
|
|
@ -273,7 +273,8 @@ register_template(
|
|||
|
||||
|
||||
r"""
|
||||
Supports: https://github.com/ymcui/Chinese-LLaMA-Alpaca-2
|
||||
Supports: https://huggingface.co/ziqingyang/chinese-alpaca-2-7b
|
||||
https://github.com/ymcui/Chinese-LLaMA-Alpaca-2
|
||||
"""
|
||||
register_template(
|
||||
name="llama2_zh",
|
||||
|
|
|
@ -6,7 +6,7 @@ import gradio as gr
|
|||
from peft.utils import WEIGHTS_NAME as PEFT_WEIGHTS_NAME
|
||||
from transformers.trainer import WEIGHTS_NAME, WEIGHTS_INDEX_NAME
|
||||
|
||||
from llmtuner.extras.constants import SUPPORTED_MODELS
|
||||
from llmtuner.extras.constants import SUPPORTED_MODELS, DEFAULT_TEMPLATE_WITH_CUSTOM_MODEL, DEFAULT_TEMPLATE
|
||||
|
||||
|
||||
DEFAULT_CACHE_DIR = "cache"
|
||||
|
@ -48,6 +48,22 @@ def get_model_path(model_name: str) -> str:
|
|||
return user_config["path_dict"].get(model_name, SUPPORTED_MODELS.get(model_name, ""))
|
||||
|
||||
|
||||
def get_template(
|
||||
model_name: str,
|
||||
) -> str:
|
||||
if model_name == "Custom":
|
||||
model_name_or_path = get_model_path(model_name)
|
||||
# get last dir
|
||||
basename = os.path.basename(model_name_or_path)
|
||||
# prefix match
|
||||
for k, v in DEFAULT_TEMPLATE_WITH_CUSTOM_MODEL.items():
|
||||
if basename.startswith(k):
|
||||
return v
|
||||
return "default"
|
||||
|
||||
return DEFAULT_TEMPLATE.get(model_name.split("-")[0], "default")
|
||||
|
||||
|
||||
def list_checkpoint(model_name: str, finetuning_type: str) -> Dict[str, Any]:
|
||||
checkpoints = []
|
||||
save_dir = os.path.join(get_save_dir(model_name), finetuning_type)
|
||||
|
|
|
@ -4,7 +4,7 @@ import gradio as gr
|
|||
|
||||
from llmtuner.extras.constants import METHODS, SUPPORTED_MODELS
|
||||
from llmtuner.extras.template import templates
|
||||
from llmtuner.webui.common import list_checkpoint, get_model_path, save_config
|
||||
from llmtuner.webui.common import list_checkpoint, get_model_path, save_config, get_template
|
||||
from llmtuner.webui.utils import can_quantize
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -39,6 +39,7 @@ def create_top() -> Dict[str, "Component"]:
|
|||
) # do not save config since the below line will save
|
||||
|
||||
model_path.change(save_config, [lang, model_name, model_path])
|
||||
model_path.change(get_template, [model_name], [template])
|
||||
|
||||
finetuning_type.change(
|
||||
list_checkpoint, [model_name, finetuning_type], [checkpoints]
|
||||
|
|
|
@ -6,6 +6,7 @@ import gradio as gr
|
|||
from llmtuner.webui.common import list_checkpoint, list_dataset, DEFAULT_DATA_DIR
|
||||
from llmtuner.webui.components.data import create_preview_box
|
||||
from llmtuner.webui.utils import can_preview, get_preview, gen_plot
|
||||
from llmtuner.extras.constants import STAGES
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from gradio.components import Component
|
||||
|
@ -14,6 +15,9 @@ if TYPE_CHECKING:
|
|||
|
||||
def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
|
||||
with gr.Row():
|
||||
stage = gr.Dropdown(choices=STAGES,
|
||||
value="Supervised Finetuning", scale=2)
|
||||
|
||||
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
|
||||
dataset = gr.Dropdown(multiselect=True, scale=4)
|
||||
data_preview_btn = gr.Button(interactive=False, scale=1)
|
||||
|
@ -62,7 +66,6 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
|||
|
||||
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
|
||||
with gr.Row():
|
||||
rlhf_method = gr.Dropdown(choices=["None", "Reward Modeling", "PPO", "DPO"], value="None", scale=1)
|
||||
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=2)
|
||||
reward_model = gr.Dropdown(scale=2)
|
||||
refresh_btn = gr.Button(scale=1)
|
||||
|
@ -101,6 +104,7 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
|||
top_elems["quantization_bit"],
|
||||
top_elems["template"],
|
||||
top_elems["source_prefix"],
|
||||
stage,
|
||||
dataset_dir,
|
||||
dataset,
|
||||
max_source_length,
|
||||
|
@ -122,7 +126,6 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
|||
lora_dropout,
|
||||
lora_target,
|
||||
resume_lora_training,
|
||||
rlhf_method,
|
||||
dpo_beta,
|
||||
reward_model,
|
||||
output_dir
|
||||
|
@ -142,6 +145,7 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
|||
)
|
||||
|
||||
return dict(
|
||||
stage=stage,
|
||||
dataset_dir=dataset_dir,
|
||||
dataset=dataset,
|
||||
data_preview_btn=data_preview_btn,
|
||||
|
@ -170,7 +174,6 @@ def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dic
|
|||
lora_target=lora_target,
|
||||
resume_lora_training=resume_lora_training,
|
||||
rlhf_tab=rlhf_tab,
|
||||
rlhf_method=rlhf_method,
|
||||
dpo_beta=dpo_beta,
|
||||
reward_model=reward_model,
|
||||
refresh_btn=refresh_btn,
|
||||
|
|
|
@ -546,7 +546,15 @@ LOCALES = {
|
|||
"zh": {
|
||||
"value": "开始导出"
|
||||
}
|
||||
}
|
||||
},
|
||||
"stage": {
|
||||
"en": {
|
||||
"label": "train stage"
|
||||
},
|
||||
"zh": {
|
||||
"label": "训练阶段"
|
||||
}
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -8,11 +8,11 @@ from transformers.trainer import TRAINING_ARGS_NAME
|
|||
from typing import Any, Dict, Generator, List, Tuple
|
||||
|
||||
from llmtuner.extras.callbacks import LogCallback
|
||||
from llmtuner.extras.constants import DEFAULT_MODULE
|
||||
from llmtuner.extras.constants import DEFAULT_MODULE, DEFAULT_TEMPLATE, DEFAULT_TEMPLATE_WITH_CUSTOM_MODEL
|
||||
from llmtuner.extras.logging import LoggerHandler
|
||||
from llmtuner.extras.misc import torch_gc
|
||||
from llmtuner.tuner import run_exp
|
||||
from llmtuner.webui.common import get_model_path, get_save_dir
|
||||
from llmtuner.webui.common import get_model_path, get_save_dir, get_template
|
||||
from llmtuner.webui.locales import ALERTS
|
||||
from llmtuner.webui.utils import gen_cmd, get_eval_results, update_process_bar
|
||||
|
||||
|
@ -70,6 +70,7 @@ class Runner:
|
|||
quantization_bit: str,
|
||||
template: str,
|
||||
source_prefix: str,
|
||||
stage: str,
|
||||
dataset_dir: str,
|
||||
dataset: List[str],
|
||||
max_source_length: int,
|
||||
|
@ -91,7 +92,6 @@ class Runner:
|
|||
lora_dropout: float,
|
||||
lora_target: str,
|
||||
resume_lora_training: bool,
|
||||
rlhf_method: str,
|
||||
dpo_beta: float,
|
||||
reward_model: str,
|
||||
output_dir: str
|
||||
|
@ -138,16 +138,18 @@ class Runner:
|
|||
)
|
||||
args[compute_type] = True
|
||||
|
||||
if rlhf_method == "Reward Modeling":
|
||||
if stage == "Pretraining":
|
||||
args["stage"] = "pt"
|
||||
if stage == "Reward Modeling":
|
||||
args["stage"] = "rm"
|
||||
args["resume_lora_training"] = False
|
||||
elif rlhf_method == "PPO":
|
||||
elif stage == "PPO":
|
||||
args["stage"] = "ppo"
|
||||
args["resume_lora_training"] = False
|
||||
args["reward_model"] = reward_model
|
||||
args["padding_side"] = "left"
|
||||
val_size = 0
|
||||
elif rlhf_method == "DPO":
|
||||
elif stage == "DPO":
|
||||
args["stage"] = "dpo"
|
||||
args["resume_lora_training"] = False
|
||||
args["dpo_beta"] = dpo_beta
|
||||
|
|
Loading…
Reference in New Issue