fix llava config
This commit is contained in:
parent
5da097f406
commit
b033232aea
|
@ -46,6 +46,9 @@ def init_adapter(
|
|||
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):
|
||||
model = model.float()
|
||||
|
||||
if model_args.visual_inputs and hasattr(model, "vision_tower"): # freeze vision model
|
||||
model.vision_tower.requires_grad_(False)
|
||||
|
||||
if finetuning_args.finetuning_type == "freeze" and is_trainable:
|
||||
logger.info("Fine-tuning method: Freeze")
|
||||
num_layers = (
|
||||
|
|
|
@ -106,7 +106,7 @@ def load_model(
|
|||
"""
|
||||
init_kwargs = _get_init_kwargs(model_args)
|
||||
config = load_config(model_args)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable, add_valuehead)
|
||||
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
|
||||
|
||||
model = None
|
||||
lazy_load = False
|
||||
|
|
|
@ -15,8 +15,8 @@ from .utils.longlora import configure_longlora
|
|||
from .utils.moe import add_z3_leaf_module, configure_moe
|
||||
from .utils.quantization import configure_quantization
|
||||
from .utils.rope import configure_rope
|
||||
from .utils.valuehead import configure_valuehead, prepare_valuehead_model
|
||||
from .utils.visual import autocast_projector_dtype
|
||||
from .utils.valuehead import prepare_valuehead_model
|
||||
from .utils.visual import autocast_projector_dtype, configure_hidden_size
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -40,7 +40,6 @@ def patch_config(
|
|||
model_args: "ModelArguments",
|
||||
init_kwargs: Dict[str, Any],
|
||||
is_trainable: bool,
|
||||
add_valuehead: bool,
|
||||
) -> None:
|
||||
if model_args.compute_dtype is None: # priority: bf16 > fp16 > fp32
|
||||
model_args.compute_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
||||
|
@ -50,9 +49,7 @@ def patch_config(
|
|||
configure_longlora(config, model_args, is_trainable)
|
||||
configure_quantization(config, tokenizer, model_args, init_kwargs)
|
||||
configure_moe(config, model_args, is_trainable)
|
||||
|
||||
if add_valuehead:
|
||||
configure_valuehead(config)
|
||||
configure_hidden_size(config)
|
||||
|
||||
if model_args.use_cache and not is_trainable:
|
||||
setattr(config, "use_cache", True)
|
||||
|
|
|
@ -8,7 +8,7 @@ from ...extras.logging import get_logger
|
|||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
from transformers import PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
@ -16,11 +16,6 @@ if TYPE_CHECKING:
|
|||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def configure_valuehead(config: "PretrainedConfig") -> None:
|
||||
if getattr(config, "model_type", None) == "llava":
|
||||
setattr(config, "hidden_size", getattr(config.vision_config, "intermediate_size", None))
|
||||
|
||||
|
||||
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
|
||||
r"""
|
||||
Loads value head parameters from Hugging Face Hub or local disk.
|
||||
|
|
|
@ -6,7 +6,7 @@ from ...extras.logging import get_logger
|
|||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel
|
||||
from transformers import PretrainedConfig, PreTrainedModel
|
||||
|
||||
from ...hparams import ModelArguments
|
||||
|
||||
|
@ -14,6 +14,11 @@ if TYPE_CHECKING:
|
|||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def configure_hidden_size(config: "PretrainedConfig") -> None:
|
||||
if getattr(config, "model_type", None) == "llava":
|
||||
setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None))
|
||||
|
||||
|
||||
def autocast_projector_dtype(
|
||||
model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector"
|
||||
) -> None:
|
||||
|
@ -22,7 +27,7 @@ def autocast_projector_dtype(
|
|||
) -> "torch.Tensor":
|
||||
return output.to(model_args.compute_dtype)
|
||||
|
||||
if hasattr(model, mm_projector_name):
|
||||
if hasattr(model, mm_projector_name) and getattr(model.config, "quantization_method", None):
|
||||
logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype))
|
||||
mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name)
|
||||
mm_projector.register_forward_hook(_mm_projector_forward_post_hook)
|
||||
|
|
Loading…
Reference in New Issue