update examples
This commit is contained in:
parent
6baafd4eb3
commit
b6e008c152
|
@ -406,7 +406,7 @@ Please refer to [data/README.md](data/README.md) for checking the details about
|
||||||
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
|
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
|
@ -406,7 +406,7 @@ Docker 镜像:
|
||||||
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
|
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
|
@ -4,59 +4,57 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
|
||||||
|
|
||||||
## Table of Contents
|
## Table of Contents
|
||||||
|
|
||||||
- [LoRA Fine-Tuning on A Single GPU](#lora-fine-tuning-on-a-single-gpu)
|
- [LoRA Fine-Tuning](#lora-fine-tuning)
|
||||||
- [QLoRA Fine-Tuning on a Single GPU](#qlora-fine-tuning-on-a-single-gpu)
|
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
|
||||||
- [LoRA Fine-Tuning on Multiple GPUs](#lora-fine-tuning-on-multiple-gpus)
|
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
|
||||||
- [LoRA Fine-Tuning on Multiple NPUs](#lora-fine-tuning-on-multiple-npus)
|
|
||||||
- [Full-Parameter Fine-Tuning on Multiple GPUs](#full-parameter-fine-tuning-on-multiple-gpus)
|
|
||||||
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
|
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
|
||||||
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
|
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
|
||||||
- [Extras](#extras)
|
- [Extras](#extras)
|
||||||
|
|
||||||
## Examples
|
## Examples
|
||||||
|
|
||||||
### LoRA Fine-Tuning on A Single GPU
|
### LoRA Fine-Tuning
|
||||||
|
|
||||||
#### (Continuous) Pre-Training
|
#### (Continuous) Pre-Training
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Supervised Fine-Tuning
|
#### Supervised Fine-Tuning
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Multimodal Supervised Fine-Tuning
|
#### Multimodal Supervised Fine-Tuning
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
|
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Reward Modeling
|
#### Reward Modeling
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### PPO Training
|
#### PPO Training
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### DPO/ORPO/SimPO Training
|
#### DPO/ORPO/SimPO Training
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### KTO Training
|
#### KTO Training
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Preprocess Dataset
|
#### Preprocess Dataset
|
||||||
|
@ -64,95 +62,79 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
|
||||||
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
|
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
|
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
|
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
|
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
|
||||||
```
|
|
||||||
|
|
||||||
### QLoRA Fine-Tuning on a Single GPU
|
|
||||||
|
|
||||||
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
### LoRA Fine-Tuning on Multiple GPUs
|
|
||||||
|
|
||||||
#### Supervised Fine-Tuning on Single Node
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Supervised Fine-Tuning on Multiple Nodes
|
#### Supervised Fine-Tuning on Multiple Nodes
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
|
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### LoRA Fine-Tuning on Multiple NPUs
|
### QLoRA Fine-Tuning
|
||||||
|
|
||||||
#### Supervised Fine-Tuning with DeepSpeed ZeRO-0
|
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### Full-Parameter Fine-Tuning on Multiple GPUs
|
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
|
||||||
|
|
||||||
|
```bash
|
||||||
|
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### Full-Parameter Fine-Tuning
|
||||||
|
|
||||||
#### Supervised Fine-Tuning on Single Node
|
#### Supervised Fine-Tuning on Single Node
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Supervised Fine-Tuning on Multiple Nodes
|
#### Supervised Fine-Tuning on Multiple Nodes
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
#### Batch Predicting and Computing BLEU and ROUGE Scores
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
|
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### Merging LoRA Adapters and Quantization
|
### Merging LoRA Adapters and Quantization
|
||||||
|
@ -162,35 +144,33 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llam
|
||||||
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
|
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Quantizing Model using AutoGPTQ
|
#### Quantizing Model using AutoGPTQ
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### Inferring LoRA Fine-Tuned Models
|
### Inferring LoRA Fine-Tuned Models
|
||||||
|
|
||||||
Use `CUDA_VISIBLE_DEVICES=0,1` to infer models on multiple devices.
|
|
||||||
|
|
||||||
#### Use CLI
|
#### Use CLI
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Use Web UI
|
#### Use Web UI
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Launch OpenAI-style API
|
#### Launch OpenAI-style API
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### Extras
|
### Extras
|
||||||
|
@ -198,32 +178,32 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.y
|
||||||
#### Full-Parameter Fine-Tuning using GaLore
|
#### Full-Parameter Fine-Tuning using GaLore
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Full-Parameter Fine-Tuning using BAdam
|
#### Full-Parameter Fine-Tuning using BAdam
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### LoRA+ Fine-Tuning
|
#### LoRA+ Fine-Tuning
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Mixture-of-Depths Fine-Tuning
|
#### Mixture-of-Depths Fine-Tuning
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### LLaMA-Pro Fine-Tuning
|
#### LLaMA-Pro Fine-Tuning
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
bash examples/extras/llama_pro/expand.sh
|
bash examples/extras/llama_pro/expand.sh
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### FSDP+QLoRA Fine-Tuning
|
#### FSDP+QLoRA Fine-Tuning
|
||||||
|
|
|
@ -4,59 +4,57 @@
|
||||||
|
|
||||||
## 目录
|
## 目录
|
||||||
|
|
||||||
- [单 GPU LoRA 微调](#单-gpu-lora-微调)
|
- [LoRA 微调](#lora-微调)
|
||||||
- [单 GPU QLoRA 微调](#单-gpu-qlora-微调)
|
- [QLoRA 微调](#qlora-微调)
|
||||||
- [多 GPU LoRA 微调](#多-gpu-lora-微调)
|
- [全参数微调](#全参数微调)
|
||||||
- [多 NPU LoRA 微调](#多-npu-lora-微调)
|
|
||||||
- [多 GPU 全参数微调](#多-gpu-全参数微调)
|
|
||||||
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
|
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
|
||||||
- [推理 LoRA 模型](#推理-lora-模型)
|
- [推理 LoRA 模型](#推理-lora-模型)
|
||||||
- [杂项](#杂项)
|
- [杂项](#杂项)
|
||||||
|
|
||||||
## 示例
|
## 示例
|
||||||
|
|
||||||
### 单 GPU LoRA 微调
|
### LoRA 微调
|
||||||
|
|
||||||
#### (增量)预训练
|
#### (增量)预训练
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 指令监督微调
|
#### 指令监督微调
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 多模态指令监督微调
|
#### 多模态指令监督微调
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
|
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 奖励模型训练
|
#### 奖励模型训练
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### PPO 训练
|
#### PPO 训练
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### DPO/ORPO/SimPO 训练
|
#### DPO/ORPO/SimPO 训练
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### KTO 训练
|
#### KTO 训练
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 预处理数据集
|
#### 预处理数据集
|
||||||
|
@ -64,95 +62,79 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
|
||||||
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
|
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
|
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 在 MMLU/CMMLU/C-Eval 上评估
|
#### 在 MMLU/CMMLU/C-Eval 上评估
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
|
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
|
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### 单 GPU QLoRA 微调
|
#### 多机指令监督微调
|
||||||
|
|
||||||
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
|
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
```
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
|
||||||
|
|
||||||
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 基于 4 比特 AWQ 量化进行指令监督微调
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 基于 2 比特 AQLM 量化进行指令监督微调
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
### 多 GPU LoRA 微调
|
|
||||||
|
|
||||||
#### 在单机上进行指令监督微调
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
#### 在多机上进行指令监督微调
|
|
||||||
|
|
||||||
```bash
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft.yaml
|
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 使用 DeepSpeed ZeRO-3 平均分配显存
|
#### 使用 DeepSpeed ZeRO-3 平均分配显存
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_gpu/llama3_lora_sft_ds.yaml
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### 多 NPU LoRA 微调
|
### QLoRA 微调
|
||||||
|
|
||||||
#### 使用 DeepSpeed ZeRO-0 进行指令监督微调
|
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/lora_multi_npu/llama3_lora_sft_ds.yaml
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### 多 GPU 全参数微调
|
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 4 比特 AWQ 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 基于 2 比特 AQLM 量化进行指令监督微调
|
||||||
|
|
||||||
|
```bash
|
||||||
|
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
### 全参数微调
|
||||||
|
|
||||||
#### 在单机上进行指令监督微调
|
#### 在单机上进行指令监督微调
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
|
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 在多机上进行指令监督微调
|
#### 在多机上进行指令监督微调
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
|
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/full_multi_gpu/llama3_full_sft.yaml
|
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
#### 批量预测并计算 BLEU 和 ROUGE 分数
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llama3_full_predict.yaml
|
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### 合并 LoRA 适配器与模型量化
|
### 合并 LoRA 适配器与模型量化
|
||||||
|
@ -162,35 +144,33 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 llamafactory-cli train examples/full_multi_gpu/llam
|
||||||
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
|
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 使用 AutoGPTQ 量化模型
|
#### 使用 AutoGPTQ 量化模型
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### 推理 LoRA 模型
|
### 推理 LoRA 模型
|
||||||
|
|
||||||
使用 `CUDA_VISIBLE_DEVICES=0,1` 进行多卡推理。
|
|
||||||
|
|
||||||
#### 使用命令行接口
|
#### 使用命令行接口
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 使用浏览器界面
|
#### 使用浏览器界面
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 启动 OpenAI 风格 API
|
#### 启动 OpenAI 风格 API
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
### 杂项
|
### 杂项
|
||||||
|
@ -198,32 +178,32 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.y
|
||||||
#### 使用 GaLore 进行全参数训练
|
#### 使用 GaLore 进行全参数训练
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 使用 BAdam 进行全参数训练
|
#### 使用 BAdam 进行全参数训练
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### LoRA+ 微调
|
#### LoRA+ 微调
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### 深度混合微调
|
#### 深度混合微调
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### LLaMA-Pro 微调
|
#### LLaMA-Pro 微调
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
bash examples/extras/llama_pro/expand.sh
|
bash examples/extras/llama_pro/expand.sh
|
||||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
|
||||||
```
|
```
|
||||||
|
|
||||||
#### FSDP+QLoRA 微调
|
#### FSDP+QLoRA 微调
|
||||||
|
|
|
@ -8,9 +8,6 @@ do_train: true
|
||||||
finetuning_type: lora
|
finetuning_type: lora
|
||||||
lora_target: all
|
lora_target: all
|
||||||
|
|
||||||
### ddp
|
|
||||||
ddp_timeout: 180000000
|
|
||||||
|
|
||||||
### dataset
|
### dataset
|
||||||
dataset: identity,alpaca_en_demo
|
dataset: identity,alpaca_en_demo
|
||||||
template: llama3
|
template: llama3
|
||||||
|
@ -34,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
||||||
|
|
|
@ -32,6 +32,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
||||||
|
|
|
@ -31,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
||||||
|
|
|
@ -31,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
pure_bf16: true
|
pure_bf16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
||||||
|
|
|
@ -1,41 +0,0 @@
|
||||||
### model
|
|
||||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
|
||||||
|
|
||||||
### method
|
|
||||||
stage: sft
|
|
||||||
do_train: true
|
|
||||||
finetuning_type: lora
|
|
||||||
lora_target: all
|
|
||||||
|
|
||||||
### ddp
|
|
||||||
ddp_timeout: 180000000
|
|
||||||
|
|
||||||
### dataset
|
|
||||||
dataset: identity,alpaca_en_demo
|
|
||||||
template: llama3
|
|
||||||
cutoff_len: 1024
|
|
||||||
max_samples: 1000
|
|
||||||
overwrite_cache: true
|
|
||||||
preprocessing_num_workers: 16
|
|
||||||
|
|
||||||
### output
|
|
||||||
output_dir: saves/llama3-8b/lora/sft
|
|
||||||
logging_steps: 10
|
|
||||||
save_steps: 500
|
|
||||||
plot_loss: true
|
|
||||||
overwrite_output_dir: true
|
|
||||||
|
|
||||||
### train
|
|
||||||
per_device_train_batch_size: 1
|
|
||||||
gradient_accumulation_steps: 2
|
|
||||||
learning_rate: 1.0e-4
|
|
||||||
num_train_epochs: 3.0
|
|
||||||
lr_scheduler_type: cosine
|
|
||||||
warmup_ratio: 0.1
|
|
||||||
fp16: true
|
|
||||||
|
|
||||||
### eval
|
|
||||||
val_size: 0.1
|
|
||||||
per_device_eval_batch_size: 1
|
|
||||||
eval_strategy: steps
|
|
||||||
eval_steps: 500
|
|
|
@ -32,6 +32,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -6,6 +6,7 @@ stage: kto
|
||||||
do_train: true
|
do_train: true
|
||||||
finetuning_type: lora
|
finetuning_type: lora
|
||||||
lora_target: all
|
lora_target: all
|
||||||
|
pref_beta: 0.1
|
||||||
|
|
||||||
### dataset
|
### dataset
|
||||||
dataset: kto_en_demo
|
dataset: kto_en_demo
|
||||||
|
@ -30,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -31,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### generate
|
### generate
|
||||||
max_new_tokens: 512
|
max_new_tokens: 512
|
|
@ -22,3 +22,4 @@ overwrite_output_dir: true
|
||||||
### eval
|
### eval
|
||||||
per_device_eval_batch_size: 1
|
per_device_eval_batch_size: 1
|
||||||
predict_with_generate: true
|
predict_with_generate: true
|
||||||
|
ddp_timeout: 180000000
|
|
@ -29,6 +29,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -30,6 +30,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -30,6 +30,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -6,9 +6,6 @@ stage: sft
|
||||||
do_train: true
|
do_train: true
|
||||||
finetuning_type: lora
|
finetuning_type: lora
|
||||||
lora_target: all
|
lora_target: all
|
||||||
|
|
||||||
### ddp
|
|
||||||
ddp_timeout: 180000000
|
|
||||||
deepspeed: examples/deepspeed/ds_z0_config.json
|
deepspeed: examples/deepspeed/ds_z0_config.json
|
||||||
|
|
||||||
### dataset
|
### dataset
|
||||||
|
@ -34,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -6,9 +6,6 @@ stage: sft
|
||||||
do_train: true
|
do_train: true
|
||||||
finetuning_type: lora
|
finetuning_type: lora
|
||||||
lora_target: all
|
lora_target: all
|
||||||
|
|
||||||
### ddp
|
|
||||||
ddp_timeout: 180000000
|
|
||||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||||
|
|
||||||
### dataset
|
### dataset
|
||||||
|
@ -34,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -31,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -30,6 +30,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -30,6 +30,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -31,6 +31,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
|
@ -30,6 +30,7 @@ num_train_epochs: 3.0
|
||||||
lr_scheduler_type: cosine
|
lr_scheduler_type: cosine
|
||||||
warmup_ratio: 0.1
|
warmup_ratio: 0.1
|
||||||
fp16: true
|
fp16: true
|
||||||
|
ddp_timeout: 180000000
|
||||||
|
|
||||||
### eval
|
### eval
|
||||||
val_size: 0.1
|
val_size: 0.1
|
Loading…
Reference in New Issue