support SimPO #3900
This commit is contained in:
parent
063f91cc80
commit
cb63b32986
|
@ -69,14 +69,16 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||
|
||||
## Changelog
|
||||
|
||||
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
|
||||
|
||||
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
|
||||
|
||||
[24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
|
||||
|
||||
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
|
||||
|
||||
<details><summary>Full Changelog</summary>
|
||||
|
||||
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
|
||||
|
||||
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
|
||||
|
||||
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
|
||||
|
@ -193,6 +195,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
|
|||
| DPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| KTO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| ORPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| SimPO Training | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
## Provided Datasets
|
||||
|
||||
|
|
|
@ -69,14 +69,16 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||
|
||||
## 更新日志
|
||||
|
||||
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力。
|
||||
|
||||
[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
|
||||
|
||||
<details><summary>展开日志</summary>
|
||||
|
||||
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
|
||||
|
||||
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
|
||||
|
||||
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
|
||||
|
@ -193,6 +195,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||
| DPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| KTO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| ORPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
| SimPO 训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
|
||||
|
||||
## 数据集
|
||||
|
||||
|
|
|
@ -47,7 +47,7 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
|
|||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
|
||||
```
|
||||
|
||||
#### DPO Training
|
||||
#### DPO/ORPO/SimPO Training
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
|
||||
|
@ -59,12 +59,6 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
|
|||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
|
||||
```
|
||||
|
||||
#### ORPO Training
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_orpo.yaml
|
||||
```
|
||||
|
||||
#### Preprocess Dataset
|
||||
|
||||
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
|
||||
|
|
|
@ -47,7 +47,7 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
|
|||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
|
||||
```
|
||||
|
||||
#### DPO 训练
|
||||
#### DPO/ORPO/SimPO 训练
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
|
||||
|
@ -59,12 +59,6 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
|
|||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
|
||||
```
|
||||
|
||||
#### ORPO 训练
|
||||
|
||||
```bash
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_orpo.yaml
|
||||
```
|
||||
|
||||
#### 预处理数据集
|
||||
|
||||
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
|
||||
|
|
|
@ -6,7 +6,7 @@ stage: dpo
|
|||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
dpo_ftx: 1.0
|
||||
pref_loss: sigmoid # [sigmoid (dpo), orpo, simpo]
|
||||
|
||||
### dataset
|
||||
dataset: dpo_en_demo
|
||||
|
|
|
@ -6,7 +6,6 @@ stage: kto
|
|||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
kto_ftx: 0.1
|
||||
|
||||
### dataset
|
||||
dataset: kto_en_demo
|
||||
|
|
|
@ -1,38 +0,0 @@
|
|||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
### method
|
||||
stage: orpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
### dataset
|
||||
dataset: dpo_en_demo
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/orpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.000005
|
||||
num_train_epochs: 3.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
eval_steps: 500
|
|
@ -48,7 +48,6 @@ TRAINING_STAGES = {
|
|||
"PPO": "ppo",
|
||||
"DPO": "dpo",
|
||||
"KTO": "kto",
|
||||
"ORPO": "orpo",
|
||||
"Pre-Training": "pt",
|
||||
}
|
||||
|
||||
|
|
|
@ -114,14 +114,18 @@ class LoraArguments:
|
|||
@dataclass
|
||||
class RLHFArguments:
|
||||
r"""
|
||||
Arguments pertaining to the PPO and DPO training.
|
||||
Arguments pertaining to the PPO, DPO and KTO training.
|
||||
"""
|
||||
|
||||
dpo_beta: float = field(
|
||||
pref_beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "The beta parameter for the DPO loss."},
|
||||
metadata={"help": "The beta parameter in the preference loss."},
|
||||
)
|
||||
dpo_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair"] = field(
|
||||
pref_ftx: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
|
||||
)
|
||||
pref_loss: Literal["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"] = field(
|
||||
default="sigmoid",
|
||||
metadata={"help": "The type of DPO loss to use."},
|
||||
)
|
||||
|
@ -129,14 +133,6 @@ class RLHFArguments:
|
|||
default=0.0,
|
||||
metadata={"help": "The robust DPO label smoothing parameter in cDPO that should be between 0 and 0.5."},
|
||||
)
|
||||
dpo_ftx: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The supervised fine-tuning loss coefficient in DPO training."},
|
||||
)
|
||||
kto_beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "The beta parameter for the KTO loss."},
|
||||
)
|
||||
kto_chosen_weight: float = field(
|
||||
default=1.0,
|
||||
metadata={"help": "The weight factor of the desirable losses in KTO training."},
|
||||
|
@ -145,13 +141,9 @@ class RLHFArguments:
|
|||
default=1.0,
|
||||
metadata={"help": "The weight factor of the undesirable losses in KTO training."},
|
||||
)
|
||||
kto_ftx: float = field(
|
||||
default=0.0,
|
||||
metadata={"help": "The supervised fine-tuning loss coefficient in KTO training."},
|
||||
)
|
||||
orpo_beta: float = field(
|
||||
default=0.1,
|
||||
metadata={"help": "The beta (lambda) parameter in the ORPO loss representing the weight of the SFT loss."},
|
||||
simpo_gamma: float = field(
|
||||
default=0.5,
|
||||
metadata={"help": "The target reward margin term in SimPO loss."},
|
||||
)
|
||||
ppo_buffer_size: int = field(
|
||||
default=1,
|
||||
|
@ -307,7 +299,7 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
|||
default=False,
|
||||
metadata={"help": "Whether or not to train model in purely bf16 precision (without AMP)."},
|
||||
)
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto", "orpo"] = field(
|
||||
stage: Literal["pt", "sft", "rm", "ppo", "dpo", "kto"] = field(
|
||||
default="sft",
|
||||
metadata={"help": "Which stage will be performed in training."},
|
||||
)
|
||||
|
@ -341,20 +333,22 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
|||
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
assert self.reward_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
|
||||
|
||||
self.use_ref_model = self.pref_loss not in ["orpo", "simpo"]
|
||||
|
||||
if self.stage == "ppo" and self.reward_model is None:
|
||||
raise ValueError("`reward_model` is necessary for PPO training.")
|
||||
|
||||
if self.stage == "ppo" and self.reward_model_type == "lora" and self.finetuning_type != "lora":
|
||||
raise ValueError("`reward_model_type` cannot be lora for Freeze/Full PPO training.")
|
||||
|
||||
if self.stage == "dpo" and self.dpo_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
|
||||
if self.stage == "dpo" and self.pref_loss != "sigmoid" and self.dpo_label_smoothing > 1e-6:
|
||||
raise ValueError("`dpo_label_smoothing` is only valid for sigmoid loss function.")
|
||||
|
||||
if self.use_llama_pro and self.finetuning_type == "full":
|
||||
raise ValueError("`use_llama_pro` is only valid for the Freeze or LoRA training.")
|
||||
|
||||
if self.use_galore and self.finetuning_type == "lora":
|
||||
raise ValueError("Cannot use LoRA with GaLore together.")
|
||||
if self.finetuning_type == "lora" and (self.use_galore or self.use_badam):
|
||||
raise ValueError("Cannot use LoRA with GaLore or BAdam together.")
|
||||
|
||||
if self.use_galore and self.use_badam:
|
||||
raise ValueError("Cannot use GaLore with BAdam together.")
|
||||
|
|
|
@ -4,6 +4,7 @@ from types import MethodType
|
|||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import Trainer
|
||||
from trl import DPOTrainer
|
||||
from trl.trainer.utils import disable_dropout_in_model
|
||||
|
@ -50,10 +51,11 @@ class CustomDPOTrainer(DPOTrainer):
|
|||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# dpo hyperparams
|
||||
self.beta = finetuning_args.dpo_beta
|
||||
self.beta = finetuning_args.pref_beta
|
||||
self.loss_type = finetuning_args.pref_loss
|
||||
self.ftx_gamma = finetuning_args.pref_ftx
|
||||
self.label_smoothing = finetuning_args.dpo_label_smoothing
|
||||
self.loss_type = finetuning_args.dpo_loss
|
||||
self.ftx_gamma = finetuning_args.dpo_ftx
|
||||
self.simpo_gamma = finetuning_args.simpo_gamma
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
|
@ -90,15 +92,66 @@ class CustomDPOTrainer(DPOTrainer):
|
|||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def sft_loss(self, chosen_logits: "torch.FloatTensor", chosen_labels: "torch.LongTensor") -> "torch.Tensor":
|
||||
def sft_loss(self, batch: Dict[str, "torch.Tensor"], chosen_logits: "torch.FloatTensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes supervised cross-entropy loss of given labels under the given logits.
|
||||
|
||||
Returns:
|
||||
A tensor of shape (batch_size,) containing the cross-entropy loss of each samples.
|
||||
"""
|
||||
all_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -all_logps
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
||||
chosen_logps = self.get_batch_logps(chosen_logits, chosen_labels, average_log_prob=True)
|
||||
return -chosen_logps
|
||||
|
||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes ORPO's odds ratio (OR) loss for batched log probabilities of the policy model.
|
||||
"""
|
||||
log_odds = (chosen_logps - rejected_logps) - (
|
||||
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
|
||||
)
|
||||
sft_loss = -chosen_logps
|
||||
odds_ratio_loss = -F.logsigmoid(log_odds)
|
||||
orpo_loss = sft_loss + self.beta * odds_ratio_loss
|
||||
return orpo_loss
|
||||
|
||||
def simpo_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes SimPO loss for batched log probabilities of the policy model.
|
||||
"""
|
||||
pi_logratios = chosen_logps - rejected_logps
|
||||
gamma_logratios = self.simpo_gamma / self.beta
|
||||
logits = pi_logratios - gamma_logratios
|
||||
simpo_loss = -F.logsigmoid(self.beta * logits)
|
||||
return simpo_loss
|
||||
|
||||
def compute_preference_loss(
|
||||
self,
|
||||
policy_chosen_logps: "torch.Tensor",
|
||||
policy_rejected_logps: "torch.Tensor",
|
||||
reference_chosen_logps: Optional["torch.Tensor"],
|
||||
reference_rejected_logps: Optional["torch.Tensor"],
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes loss for preference learning.
|
||||
"""
|
||||
if not self.finetuning_args.use_ref_model:
|
||||
if self.loss_type == "orpo":
|
||||
losses = self.odds_ratio_loss(policy_chosen_logps, policy_rejected_logps)
|
||||
elif self.loss_type == "simpo":
|
||||
losses = self.simpo_loss(policy_chosen_logps, policy_rejected_logps)
|
||||
else:
|
||||
raise NotImplementedError("Unknown loss type: {}.".format(self.loss_type))
|
||||
|
||||
chosen_rewards = self.beta * policy_chosen_logps.to(self.accelerator.device).detach()
|
||||
rejected_rewards = self.beta * policy_rejected_logps.to(self.accelerator.device).detach()
|
||||
else:
|
||||
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
||||
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
|
||||
)
|
||||
|
||||
return losses, chosen_rewards, rejected_rewards
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
|
@ -108,13 +161,15 @@ class CustomDPOTrainer(DPOTrainer):
|
|||
|
||||
Otherwise the average log probabilities.
|
||||
"""
|
||||
batch_copied = {k: v.detach().clone() for k, v in batch.items()} # avoid error
|
||||
all_logits: "torch.Tensor" = model(**batch_copied, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||
if self.finetuning_args.use_ref_model:
|
||||
batch = {k: v.detach().clone() for k, v in batch.items()} # avoid error
|
||||
|
||||
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||
|
||||
all_logps = self.get_batch_logps(
|
||||
logits=all_logits,
|
||||
labels=batch_copied["labels"],
|
||||
average_log_prob=(self.loss_type == "ipo"),
|
||||
labels=batch["labels"],
|
||||
average_log_prob=(self.loss_type in ["ipo", "orpo", "simpo"]),
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
|
@ -123,6 +178,32 @@ class CustomDPOTrainer(DPOTrainer):
|
|||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
||||
|
||||
def compute_reference_log_probs(
|
||||
self, batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple[Optional["torch.Tensor"], Optional["torch.Tensor"]]:
|
||||
r"""
|
||||
Computes log probabilities of the reference model.
|
||||
"""
|
||||
if not self.finetuning_args.use_ref_model:
|
||||
return None, None
|
||||
|
||||
if self.ref_model is None:
|
||||
ref_model = self.model
|
||||
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with torch.no_grad(), ref_context:
|
||||
(
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
_,
|
||||
_,
|
||||
) = self.concatenated_forward(ref_model, batch)
|
||||
|
||||
return reference_chosen_logps, reference_rejected_logps
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
|
@ -140,32 +221,16 @@ class CustomDPOTrainer(DPOTrainer):
|
|||
policy_rejected_logits,
|
||||
) = self.concatenated_forward(model, batch)
|
||||
|
||||
with torch.no_grad():
|
||||
if self.ref_model is None:
|
||||
ref_model = self.model
|
||||
ref_context = self.accelerator.unwrap_model(self.model).disable_adapter()
|
||||
else:
|
||||
ref_model = self.ref_model
|
||||
ref_context = nullcontext()
|
||||
|
||||
with ref_context:
|
||||
(
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
_,
|
||||
_,
|
||||
) = self.concatenated_forward(ref_model, batch)
|
||||
|
||||
losses, chosen_rewards, rejected_rewards = self.dpo_loss(
|
||||
reference_chosen_logps, reference_rejected_logps = self.compute_reference_log_probs(batch)
|
||||
losses, chosen_rewards, rejected_rewards = self.compute_preference_loss(
|
||||
policy_chosen_logps,
|
||||
policy_rejected_logps,
|
||||
reference_chosen_logps,
|
||||
reference_rejected_logps,
|
||||
)
|
||||
sft_loss = self.sft_loss(batch, policy_chosen_logits) # compute chosen_logps with masks
|
||||
if self.ftx_gamma > 1e-6:
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_labels, _ = batch["labels"].split(batch_size, dim=0)
|
||||
losses += self.ftx_gamma * self.sft_loss(policy_chosen_logits, chosen_labels)
|
||||
losses += self.ftx_gamma * sft_loss
|
||||
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
|
@ -178,5 +243,8 @@ class CustomDPOTrainer(DPOTrainer):
|
|||
metrics["{}logps/chosen".format(prefix)] = policy_chosen_logps.detach().mean().cpu()
|
||||
metrics["{}logits/rejected".format(prefix)] = policy_rejected_logits.detach().mean().cpu()
|
||||
metrics["{}logits/chosen".format(prefix)] = policy_chosen_logits.detach().mean().cpu()
|
||||
if self.loss_type == "orpo":
|
||||
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu()
|
||||
metrics["{}odds_ratio_loss".format(prefix)] = ((losses - sft_loss) / self.beta).detach().mean().cpu()
|
||||
|
||||
return losses.mean(), metrics
|
||||
|
|
|
@ -36,10 +36,13 @@ def run_dpo(
|
|||
)
|
||||
|
||||
# Create reference model
|
||||
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself
|
||||
ref_model = model
|
||||
if finetuning_args.use_ref_model:
|
||||
if finetuning_args.ref_model is None and (not training_args.do_train): # use the model itself
|
||||
ref_model = model
|
||||
else:
|
||||
ref_model = create_ref_model(model_args, finetuning_args)
|
||||
else:
|
||||
ref_model = create_ref_model(model_args, finetuning_args)
|
||||
ref_model = None
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
@ -69,7 +72,7 @@ def run_dpo(
|
|||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
if id(model) == id(ref_model): # unable to compute rewards without a reference model
|
||||
if id(model) == id(ref_model): # unable to compute rewards if reference model is the model itself
|
||||
remove_keys = [key for key in metrics.keys() if "rewards" in key]
|
||||
for key in remove_keys:
|
||||
metrics.pop(key)
|
||||
|
|
|
@ -50,10 +50,10 @@ class CustomKTOTrainer(KTOTrainer):
|
|||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
# kto hyperparams
|
||||
self.beta = finetuning_args.kto_beta
|
||||
self.beta = finetuning_args.pref_beta
|
||||
self.desirable_weight = finetuning_args.kto_chosen_weight
|
||||
self.undesirable_weight = finetuning_args.kto_rejected_weight
|
||||
self.ftx_gamma = finetuning_args.kto_ftx
|
||||
self.ftx_gamma = finetuning_args.pref_ftx
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if not hasattr(self, "accelerator"):
|
||||
|
|
|
@ -1,4 +0,0 @@
|
|||
from .workflow import run_orpo
|
||||
|
||||
|
||||
__all__ = ["run_orpo"]
|
|
@ -1,133 +0,0 @@
|
|||
from collections import defaultdict
|
||||
from types import MethodType
|
||||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from transformers import Trainer
|
||||
from trl import DPOTrainer
|
||||
from trl.trainer.utils import disable_dropout_in_model
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ..utils import create_custom_optimzer, create_custom_scheduler
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
||||
class CustomORPOTrainer(DPOTrainer):
|
||||
def __init__(
|
||||
self,
|
||||
model: Union["PreTrainedModel", "torch.nn.Module"],
|
||||
finetuning_args: "FinetuningArguments",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
disable_dropout: bool = True,
|
||||
**kwargs,
|
||||
):
|
||||
if disable_dropout:
|
||||
disable_dropout_in_model(model)
|
||||
|
||||
self.finetuning_args = finetuning_args
|
||||
self.processor = processor
|
||||
self.reference_free = False
|
||||
self.use_dpo_data_collator = True # hack to avoid warning
|
||||
self.generate_during_eval = False # disable at evaluation
|
||||
self.label_pad_token_id = IGNORE_INDEX
|
||||
self.padding_value = 0
|
||||
self.is_encoder_decoder = model.config.is_encoder_decoder
|
||||
self.precompute_ref_log_probs = False
|
||||
self._precomputed_train_ref_log_probs = False
|
||||
self._precomputed_eval_ref_log_probs = False
|
||||
self._peft_has_been_casted_to_bf16 = False
|
||||
|
||||
self.beta = finetuning_args.orpo_beta
|
||||
self._stored_metrics = defaultdict(lambda: defaultdict(list))
|
||||
|
||||
Trainer.__init__(self, model=model, **kwargs)
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
return super().create_optimizer()
|
||||
|
||||
def create_scheduler(
|
||||
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
|
||||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":
|
||||
r"""
|
||||
Computes ORPO's odds ratio (OR) loss.
|
||||
"""
|
||||
log_odds = (chosen_logps - rejected_logps) - (
|
||||
torch.log1p(-torch.exp(chosen_logps)) - torch.log1p(-torch.exp(rejected_logps))
|
||||
)
|
||||
odds_ratio_loss = -F.logsigmoid(log_odds)
|
||||
return odds_ratio_loss
|
||||
|
||||
def concatenated_forward(
|
||||
self, model: "PreTrainedModel", batch: Dict[str, "torch.Tensor"]
|
||||
) -> Tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
|
||||
r"""
|
||||
Computes the average log probabilities of the labels under the given logits.
|
||||
"""
|
||||
all_logits: "torch.Tensor" = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
|
||||
|
||||
all_logps = self.get_batch_logps(
|
||||
logits=all_logits,
|
||||
labels=batch["labels"],
|
||||
average_log_prob=True,
|
||||
is_encoder_decoder=self.is_encoder_decoder,
|
||||
label_pad_token_id=self.label_pad_token_id,
|
||||
)
|
||||
batch_size = batch["input_ids"].size(0) // 2
|
||||
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
|
||||
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
|
||||
return chosen_logps, rejected_logps, chosen_logits, rejected_logits
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
batch: Dict[str, "torch.Tensor"],
|
||||
train_eval: Literal["train", "eval"] = "train",
|
||||
) -> Tuple["torch.Tensor", Dict[str, "torch.Tensor"]]:
|
||||
r"""
|
||||
Computes the ORPO loss and other metrics for the given batch of inputs for train or test.
|
||||
"""
|
||||
metrics = {}
|
||||
chosen_logps, rejected_logps, chosen_logits, rejected_logits = self.concatenated_forward(model, batch)
|
||||
sft_loss = -chosen_logps
|
||||
odds_ratio_loss = self.odds_ratio_loss(chosen_logps, rejected_logps)
|
||||
batch_loss = (sft_loss + self.beta * odds_ratio_loss).mean()
|
||||
|
||||
chosen_rewards = self.beta * chosen_logps.detach()
|
||||
rejected_rewards = self.beta * rejected_logps.detach()
|
||||
reward_accuracies = (chosen_rewards > rejected_rewards).float()
|
||||
|
||||
prefix = "eval_" if train_eval == "eval" else ""
|
||||
metrics["{}rewards/chosen".format(prefix)] = chosen_rewards.mean().cpu()
|
||||
metrics["{}rewards/rejected".format(prefix)] = rejected_rewards.mean().cpu()
|
||||
metrics["{}rewards/accuracies".format(prefix)] = reward_accuracies.mean().cpu()
|
||||
metrics["{}rewards/margins".format(prefix)] = (chosen_rewards - rejected_rewards).mean().cpu()
|
||||
metrics["{}logps/rejected".format(prefix)] = rejected_logps.detach().mean().cpu()
|
||||
metrics["{}logps/chosen".format(prefix)] = chosen_logps.detach().mean().cpu()
|
||||
metrics["{}logits/rejected".format(prefix)] = rejected_logits.detach().mean().cpu()
|
||||
metrics["{}logits/chosen".format(prefix)] = chosen_logits.detach().mean().cpu()
|
||||
metrics["{}sft_loss".format(prefix)] = sft_loss.detach().mean().cpu()
|
||||
metrics["{}odds_ratio_loss".format(prefix)] = odds_ratio_loss.detach().mean().cpu()
|
||||
|
||||
return batch_loss, metrics
|
|
@ -1,69 +0,0 @@
|
|||
# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
|
||||
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
from ...data import PairwiseDataCollatorWithPadding, get_dataset, split_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...hparams import ModelArguments
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .trainer import CustomORPOTrainer
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
||||
from ...hparams import DataArguments, FinetuningArguments
|
||||
|
||||
|
||||
def run_orpo(
|
||||
model_args: "ModelArguments",
|
||||
data_args: "DataArguments",
|
||||
training_args: "Seq2SeqTrainingArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
dataset = get_dataset(model_args, data_args, training_args, stage="rm", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
data_collator = PairwiseDataCollatorWithPadding(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8,
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
)
|
||||
|
||||
# Update arguments
|
||||
training_args.remove_unused_columns = False # important for pairwise dataset
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomORPOTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
**tokenizer_module,
|
||||
**split_dataset(dataset, data_args, training_args),
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "rewards/accuracies", "sft_loss"])
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval")
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Create model card
|
||||
create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)
|
|
@ -10,7 +10,6 @@ from ..hparams import get_infer_args, get_train_args
|
|||
from ..model import load_model, load_tokenizer
|
||||
from .dpo import run_dpo
|
||||
from .kto import run_kto
|
||||
from .orpo import run_orpo
|
||||
from .ppo import run_ppo
|
||||
from .pt import run_pt
|
||||
from .rm import run_rm
|
||||
|
@ -40,8 +39,6 @@ def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: List["TrainerCallb
|
|||
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "kto":
|
||||
run_kto(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
elif finetuning_args.stage == "orpo":
|
||||
run_orpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
||||
else:
|
||||
raise ValueError("Unknown task.")
|
||||
|
||||
|
@ -100,5 +97,6 @@ def export_model(args: Optional[Dict[str, Any]] = None) -> None:
|
|||
getattr(processor, "image_processor").push_to_hub(
|
||||
model_args.export_hub_model_id, token=model_args.hf_hub_token
|
||||
)
|
||||
|
||||
except Exception:
|
||||
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
||||
|
|
|
@ -90,7 +90,7 @@ def create_ref_model(
|
|||
)
|
||||
)
|
||||
ref_model_args = ModelArguments(**ref_model_args_dict)
|
||||
ref_finetuning_args = FinetuningArguments(finetuning_type="lora")
|
||||
ref_finetuning_args = FinetuningArguments()
|
||||
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
|
||||
ref_model = load_model(
|
||||
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
||||
|
@ -146,7 +146,7 @@ def create_reward_model(
|
|||
)
|
||||
)
|
||||
reward_model_args = ModelArguments(**reward_model_args_dict)
|
||||
reward_finetuning_args = FinetuningArguments(finetuning_type="lora")
|
||||
reward_finetuning_args = FinetuningArguments()
|
||||
tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
|
||||
reward_model = load_model(
|
||||
tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
|
||||
|
|
|
@ -186,7 +186,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
|
|||
with gr.Row():
|
||||
pref_beta = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.01)
|
||||
pref_ftx = gr.Slider(minimum=0, maximum=10, value=0, step=0.01)
|
||||
pref_loss = gr.Dropdown(choices=["sigmoid", "hinge", "ipo", "kto_pair"], value="sigmoid")
|
||||
pref_loss = gr.Dropdown(choices=["sigmoid", "hinge", "ipo", "kto_pair", "orpo", "simpo"], value="sigmoid")
|
||||
reward_model = gr.Dropdown(multiselect=True, allow_custom_value=True)
|
||||
with gr.Column():
|
||||
ppo_score_norm = gr.Checkbox()
|
||||
|
|
|
@ -179,15 +179,10 @@ class Runner:
|
|||
args["ppo_whiten_rewards"] = get("train.ppo_whiten_rewards")
|
||||
args["top_k"] = 0
|
||||
args["top_p"] = 0.9
|
||||
elif args["stage"] == "dpo":
|
||||
args["dpo_beta"] = get("train.pref_beta")
|
||||
args["dpo_ftx"] = get("train.pref_ftx")
|
||||
args["dpo_loss"] = get("train.pref_loss")
|
||||
elif args["stage"] == "kto":
|
||||
args["kto_beta"] = get("train.pref_beta")
|
||||
args["kto_ftx"] = get("train.pref_ftx")
|
||||
elif args["stage"] == "orpo":
|
||||
args["orpo_beta"] = get("train.pref_beta")
|
||||
elif args["stage"] in ["dpo", "kto"]:
|
||||
args["pref_beta"] = get("train.pref_beta")
|
||||
args["pref_ftx"] = get("train.pref_ftx")
|
||||
args["pref_loss"] = get("train.pref_loss")
|
||||
|
||||
# galore config
|
||||
if args["use_galore"]:
|
||||
|
|
Loading…
Reference in New Issue