Added the reference address for TRL PPO details.
This commit is contained in:
parent
77cff78863
commit
ceba96f9ed
|
@ -47,7 +47,8 @@ Choose your path:
|
|||
## Features
|
||||
|
||||
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
|
||||
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
|
||||
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO (The details of TRL PPO can refer to [this blog](https://newfacade.github.io/notes-on-reinforcement-learning/17-ppo-trl.html).), DPO, KTO, ORPO, etc.
|
||||
|
||||
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
|
||||
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
|
||||
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
|
||||
|
|
|
@ -47,7 +47,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
|
|||
## 项目特色
|
||||
|
||||
- **多种模型**:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
|
||||
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
|
||||
- **集成方法**:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO(有关TRL PPO的详细信息,请参阅[此博客](https://newfacade.github.io/notes-on-reinforcement-learning/17-ppo-trl.html))、DPO 训练、KTO 训练、ORPO 训练等等。
|
||||
- **多种精度**:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
|
||||
- **先进算法**:GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
|
||||
- **实用技巧**:FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
|
||||
|
|
Loading…
Reference in New Issue