add autogptq

This commit is contained in:
hiyouga 2023-07-02 20:36:37 +08:00
parent b8e1f09a2e
commit cf6d57fd3e
2 changed files with 52 additions and 2 deletions

47
tests/auto_gptq.py Normal file
View File

@ -0,0 +1,47 @@
# coding=utf-8
# Quantizes fine-tuned models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ).
# Usage: python auto_gptq.py --input_dir path_to_llama_model --output_dir path_to_quant_model --data_file alpaca.json
# dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"])
import fire
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
def quantize(input_dir: str, output_dir: str, data_file: str):
tokenizer = AutoTokenizer.from_pretrained(input_dir, use_fast=False, padding_side="left")
def format_example(examples):
prefix=("A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.")
texts = []
for i in range(len(examples["instruction"])):
prompt = prefix + "\n"
if "history" in examples:
for user_query, bot_resp in examples["history"][i]:
prompt += "Human: {}\nAssistant: {}\n".format(user_query, bot_resp)
prompt += "Human: {}\nAssistant: {}".format(examples["instruction"][i], examples["output"][i])
texts.append(prompt)
return tokenizer(texts, truncation=True, max_length=1024)
dataset = load_dataset("json", data_files=data_file)["train"]
column_names = list(dataset.column_names)
dataset = dataset.select(range(1024))
dataset = dataset.map(format_example, batched=True, remove_columns=column_names)
dataset = dataset.shuffle()
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=False
)
model = AutoGPTQForCausalLM.from_pretrained(input_dir, quantize_config)
model.quantize(dataset)
model.save_quantized(output_dir)
if __name__ == "__main__":
fire.Fire(quantize)

View File

@ -1,6 +1,7 @@
# coding=utf-8 # coding=utf-8
# Evaluates fine-tuned models automatically. # Evaluates fine-tuned models automatically.
# Usage: python evaluate.py --evalset ceval/ceval-exam:law --split dev --api_base http://localhost:8000/v1 --task_type choice # Usage: python evaluate_zh.py --evalset ceval/ceval-exam:law --split dev --output_file result.json
# --api_base http://localhost:8000/v1 --task_type choice --n_samples 100
# dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"]) # dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"])
@ -75,6 +76,7 @@ EXT2TYPE = {
def evaluate( def evaluate(
evalset: str, evalset: str,
api_base: str, api_base: str,
output_file: str,
split: Optional[str] = "val", split: Optional[str] = "val",
task_type: Optional[Literal["choice", "cloze", "openqa"]] = "choice", task_type: Optional[Literal["choice", "cloze", "openqa"]] = "choice",
n_samples: Optional[int] = 20 n_samples: Optional[int] = 20
@ -122,7 +124,8 @@ def evaluate(
}) })
print("Result: {}/{}\nAccuracy: {:.2f}%".format(n_correct, n_samples, n_correct / n_samples * 100)) print("Result: {}/{}\nAccuracy: {:.2f}%".format(n_correct, n_samples, n_correct / n_samples * 100))
with open("result.json", "w", encoding="utf-8") as f:
with open(output_file, "w", encoding="utf-8") as f:
json.dump(predictions, f, indent=2, ensure_ascii=False) json.dump(predictions, f, indent=2, ensure_ascii=False)