add llava and instructblip
This commit is contained in:
parent
e1afbea68f
commit
cfb485eddf
|
@ -414,9 +414,10 @@
|
|||
},
|
||||
"folder": "python"
|
||||
},
|
||||
"llava_instruct_100": {
|
||||
"file_name": "llava_instruct_100.json",
|
||||
"file_sha1": "96fa18313544e22444fe20eead7754b17da452ae",
|
||||
"ranking": true
|
||||
"llava_instruct": {
|
||||
"hf_hub_url": "HuggingFaceH4/llava-instruct-mix-vsft"
|
||||
},
|
||||
"mllm_instruct_example": {
|
||||
"hf_hub_url": "data/mllm_example_dataset"
|
||||
}
|
||||
}
|
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
Binary file not shown.
After Width: | Height: | Size: 48 KiB |
Binary file not shown.
After Width: | Height: | Size: 68 KiB |
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,65 @@
|
|||
[
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "Who are they?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "They're Kane and Gretzka from Bayern Munich.",
|
||||
"role": "assistant"
|
||||
},
|
||||
{
|
||||
"content": "What are they doing?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "They are celebrating on the soccer field",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"image": "1.jpg"
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "Who is he?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "He's Thomas Muller from Bayern Munich.",
|
||||
"role": "assistant"
|
||||
},
|
||||
{
|
||||
"content": "Why is he on the ground?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "Because he's sliding on his knees to celebrate.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"image": "2.jpg"
|
||||
},
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"content": "Please describe this image",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "Chinese astronaut Gui Haichao is giving a speech.",
|
||||
"role": "assistant"
|
||||
},
|
||||
{
|
||||
"content": "What has he accomplished?",
|
||||
"role": "user"
|
||||
},
|
||||
{
|
||||
"content": "He was appointed to be a payload specialist on Shenzhou 16 mission in June 2022, thus becoming the first Chinese civilian of Group 3 in space on 30 May 2023. He is responsible for the on-orbit operation of space science experimental payloads.",
|
||||
"role": "assistant"
|
||||
}
|
||||
],
|
||||
"image": "3.jpg"
|
||||
}
|
||||
]
|
|
@ -0,0 +1,25 @@
|
|||
---
|
||||
dataset_info:
|
||||
features:
|
||||
- name: messages
|
||||
list:
|
||||
- name: content
|
||||
list:
|
||||
- name: index
|
||||
dtype: int64
|
||||
- name: text
|
||||
dtype: string
|
||||
- name: type
|
||||
dtype: string
|
||||
- name: role
|
||||
dtype: string
|
||||
- name: images
|
||||
sequence: image
|
||||
configs:
|
||||
- config_name: default
|
||||
data_files:
|
||||
- split: train
|
||||
path: data/train-*
|
||||
- split: test
|
||||
path: data/test-*
|
||||
---
|
Binary file not shown.
Binary file not shown.
|
@ -3,20 +3,20 @@
|
|||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft_mm \
|
||||
--do_train \
|
||||
--model_name_or_path /home/LAB/fengzc/LLM/checkpoints/Salesforce/instructblip-vicuna-7b \
|
||||
--dataset llava_instruct_100 \
|
||||
--model_name_or_path Salesforce/instructblip-vicuna-7b \
|
||||
--dataset mllm_instruct_example \
|
||||
--dataset_dir data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,k_proj \
|
||||
--lora_target all \
|
||||
--output_dir saves/instructblip-vicuna-7b/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 4 \
|
||||
--per_device_train_batch_size 3 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--warmup_steps 20 \
|
||||
|
@ -25,10 +25,8 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 1e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--num_train_epochs 50 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--quantization_bit 8 \
|
||||
--image_path /home/LAB/fengzc/LLM/checkpoints/liuhaotian/LLaVA-Instruct-150K/images/coco/train2017 \
|
||||
--use_qformer
|
||||
--bf16
|
|
@ -3,20 +3,20 @@
|
|||
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
||||
--stage sft_mm \
|
||||
--do_train \
|
||||
--model_name_or_path /home/LAB/fengzc/LLM/checkpoints/Salesforce/blip2-opt-2.7b \
|
||||
--dataset llava_instruct_100 \
|
||||
--model_name_or_path llava-hf/llava-1.5-7b-hf \
|
||||
--dataset mllm_instruct_example \
|
||||
--dataset_dir data \
|
||||
--template default \
|
||||
--finetuning_type lora \
|
||||
--lora_target q_proj,k_proj \
|
||||
--output_dir saves/blip2-opt-2.7b/lora/sft \
|
||||
--lora_target all \
|
||||
--output_dir saves/llava-1.5-7b/lora/sft \
|
||||
--overwrite_cache \
|
||||
--overwrite_output_dir \
|
||||
--cutoff_len 1024 \
|
||||
--preprocessing_num_workers 16 \
|
||||
--per_device_train_batch_size 4 \
|
||||
--per_device_train_batch_size 3 \
|
||||
--per_device_eval_batch_size 1 \
|
||||
--gradient_accumulation_steps 8 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--lr_scheduler_type cosine \
|
||||
--logging_steps 1 \
|
||||
--warmup_steps 20 \
|
||||
|
@ -25,9 +25,8 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
|
|||
--evaluation_strategy steps \
|
||||
--load_best_model_at_end \
|
||||
--learning_rate 5e-5 \
|
||||
--num_train_epochs 3.0 \
|
||||
--num_train_epochs 100 \
|
||||
--max_samples 3000 \
|
||||
--val_size 0.1 \
|
||||
--plot_loss \
|
||||
--quantization_bit 8 \
|
||||
--image_path /home/LAB/fengzc/LLM/checkpoints/liuhaotian/LLaVA-Instruct-150K/images/coco/train2017
|
||||
--bf16
|
|
@ -0,0 +1,95 @@
|
|||
import json
|
||||
import os.path
|
||||
|
||||
import fire
|
||||
from datasets import Dataset, concatenate_datasets, load_dataset, Value, Image, Features, Sequence
|
||||
|
||||
"""usage
|
||||
python3 scripts/make_mllm_instruct.py \
|
||||
--json_path data/llava_instruct_example.json \
|
||||
--image_path data/images \
|
||||
--output_path data/mllm_example_dataset
|
||||
"""
|
||||
|
||||
|
||||
def make_one_json(json_path, image_path) -> Dataset:
|
||||
with open(json_path) as f:
|
||||
raw_data_ls = json.loads(f.read())
|
||||
data_ls = []
|
||||
for i, data in enumerate(raw_data_ls):
|
||||
for j, message in enumerate(data['messages']):
|
||||
text = message['content']
|
||||
message['content'] = [{'index': None, 'text': text, 'type': 'text'}]
|
||||
if j == 0:
|
||||
message['content'].append({'index': 0, 'text': None, 'type': 'image'})
|
||||
image = data['image']
|
||||
if image_path:
|
||||
image = os.path.join(image_path, data['image'])
|
||||
data['images'] = [image]
|
||||
del data['image']
|
||||
data_ls.append(data)
|
||||
|
||||
def gen():
|
||||
for data in data_ls:
|
||||
yield data
|
||||
|
||||
features = Features({'messages': [{'content': [
|
||||
{'index': Value(dtype='int64', id=None), 'text': Value(dtype='string', id=None),
|
||||
'type': Value(dtype='string', id=None)}], 'role': Value(dtype='string', id=None)}],
|
||||
'images': Sequence(feature=Image(decode=True, id=None), length=-1, id=None)})
|
||||
dataset = Dataset.from_generator(gen, features=features)
|
||||
return dataset
|
||||
|
||||
|
||||
yaml_content = """---
|
||||
dataset_info:
|
||||
features:
|
||||
- name: messages
|
||||
list:
|
||||
- name: content
|
||||
list:
|
||||
- name: index
|
||||
dtype: int64
|
||||
- name: text
|
||||
dtype: string
|
||||
- name: type
|
||||
dtype: string
|
||||
- name: role
|
||||
dtype: string
|
||||
- name: images
|
||||
sequence: image
|
||||
configs:
|
||||
- config_name: default
|
||||
data_files:
|
||||
- split: train
|
||||
path: data/train-*
|
||||
- split: test
|
||||
path: data/test-*
|
||||
---"""
|
||||
|
||||
|
||||
def main(
|
||||
json_path: str,
|
||||
image_path: str,
|
||||
output_path: str,
|
||||
):
|
||||
json_path_list = json_path.split()
|
||||
dataset_list = []
|
||||
for json_path in json_path_list:
|
||||
dataset = make_one_json(json_path, image_path)
|
||||
dataset_list.append(dataset)
|
||||
dataset = concatenate_datasets(dataset_list)
|
||||
print(dataset[0])
|
||||
data_path = os.path.join(output_path, "data")
|
||||
os.makedirs(os.path.join(data_path), exist_ok=True)
|
||||
parquet_path = os.path.join(data_path, "train-0.parquet")
|
||||
dataset.to_parquet(parquet_path)
|
||||
parquet_path = os.path.join(data_path, "test-0.parquet")
|
||||
dataset.to_parquet(parquet_path)
|
||||
readme_path = os.path.join(output_path, "README.md")
|
||||
with open(readme_path, 'w') as f:
|
||||
f.write(yaml_content)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(main)
|
|
@ -0,0 +1,84 @@
|
|||
import os.path
|
||||
|
||||
import fire
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from peft import PeftModel
|
||||
from transformers import AutoTokenizer, AutoModelForVision2Seq, AutoProcessor
|
||||
|
||||
"""usage
|
||||
python3 scripts/test_mllm.py \
|
||||
--base_model_path llava-hf/llava-1.5-7b-hf \
|
||||
--lora_model_path saves/llava-1.5-7b/lora/sft \
|
||||
--model_path saves/llava-1.5-7b/lora/merged \
|
||||
--dataset_name data/mllm_example_dataset \
|
||||
--do_merge 1
|
||||
"""
|
||||
|
||||
|
||||
def get_processor(model_path):
|
||||
CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"""
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
||||
tokenizer.chat_template = CHAT_TEMPLATE
|
||||
processor = AutoProcessor.from_pretrained(model_path)
|
||||
processor.tokenizer = tokenizer
|
||||
return processor
|
||||
|
||||
|
||||
def apply_lora(base_model_path, model_path, lora_path):
|
||||
print(f"Loading the base model from {base_model_path}")
|
||||
base_model = AutoModelForVision2Seq.from_pretrained(
|
||||
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="cuda",
|
||||
)
|
||||
processor = get_processor(base_model_path)
|
||||
tokenizer = processor.tokenizer
|
||||
print(f"Loading the LoRA adapter from {lora_path}")
|
||||
|
||||
lora_model = PeftModel.from_pretrained(
|
||||
base_model,
|
||||
lora_path,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
print("Applying the LoRA")
|
||||
model = lora_model.merge_and_unload()
|
||||
|
||||
print(f"Saving the target model to {model_path}")
|
||||
model.save_pretrained(model_path)
|
||||
tokenizer.save_pretrained(model_path)
|
||||
processor.image_processor.save_pretrained(model_path)
|
||||
|
||||
|
||||
def main(
|
||||
model_path: str,
|
||||
dataset_name: str,
|
||||
base_model_path: str = "",
|
||||
lora_model_path: str = "",
|
||||
do_merge: bool = False,
|
||||
):
|
||||
if not os.path.exists(model_path) or do_merge:
|
||||
apply_lora(base_model_path, model_path, lora_model_path)
|
||||
model = AutoModelForVision2Seq.from_pretrained(
|
||||
model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, device_map="cuda"
|
||||
)
|
||||
processor = get_processor(model_path)
|
||||
raw_datasets = load_dataset(dataset_name)
|
||||
train_dataset = raw_datasets['train']
|
||||
examples = train_dataset.select(range(3))
|
||||
texts = []
|
||||
images = []
|
||||
for example in examples:
|
||||
messages = example["messages"][:1]
|
||||
text = processor.tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=False
|
||||
)
|
||||
texts.append(text)
|
||||
images.append(example["images"][0])
|
||||
batch = processor(texts, images, return_tensors="pt", padding=True).to("cuda")
|
||||
output = model.generate(**batch, max_new_tokens=100)
|
||||
res = processor.batch_decode(output, skip_special_tokens=True)
|
||||
print(res)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
fire.Fire(main)
|
|
@ -199,8 +199,7 @@ def get_mm_dataset(
|
|||
with training_args.main_process_first(desc="load dataset"):
|
||||
all_datasets = []
|
||||
for dataset_attr in get_dataset_list(data_args):
|
||||
local_path = os.path.join(data_args.dataset_dir, dataset_attr.dataset_name)
|
||||
all_datasets.append(load_dataset("json", data_files=local_path)['train'])
|
||||
all_datasets.append(load_dataset(dataset_attr.dataset_name)['train'])
|
||||
dataset = merge_dataset(all_datasets, data_args, training_args)
|
||||
|
||||
return dataset
|
||||
|
|
|
@ -275,4 +275,4 @@ def get_preprocess_and_print_func(
|
|||
)
|
||||
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
||||
|
||||
return preprocess_func, print_function
|
||||
return preprocess_func, print_function
|
|
@ -88,10 +88,6 @@ class DataArguments:
|
|||
default=None,
|
||||
metadata={"help": "Path to save or load the tokenized datasets."},
|
||||
)
|
||||
image_path: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Path to images."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
if self.reserved_label_len >= self.cutoff_len:
|
||||
|
|
|
@ -165,10 +165,6 @@ class ModelArguments:
|
|||
default=False,
|
||||
metadata={"help": "For debugging purposes, print the status of the parameters in the model."},
|
||||
)
|
||||
use_qformer: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether use qformer for Multimodal LLM."},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
self.compute_dtype = None
|
||||
|
|
|
@ -182,7 +182,8 @@ def init_adapter(
|
|||
def init_mm_adapter(
|
||||
model: "AutoModelForVision2Seq", model_args: "ModelArguments",
|
||||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool
|
||||
is_trainable: bool,
|
||||
use_clm=True,
|
||||
) -> "AutoModelForVision2Seq":
|
||||
if finetuning_args.finetuning_type == "lora":
|
||||
logger.info("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
|
||||
|
@ -253,12 +254,19 @@ def init_mm_adapter(
|
|||
}
|
||||
model = FastLanguageModel.get_peft_model(**peft_kwargs, **unsloth_peft_kwargs)
|
||||
else:
|
||||
lora_config = LoraConfig(
|
||||
# task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
use_dora=finetuning_args.use_dora,
|
||||
**peft_kwargs,
|
||||
)
|
||||
if use_clm:
|
||||
lora_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=False,
|
||||
use_dora=finetuning_args.use_dora,
|
||||
**peft_kwargs,
|
||||
)
|
||||
else:
|
||||
lora_config = LoraConfig(
|
||||
inference_mode=False,
|
||||
use_dora=finetuning_args.use_dora,
|
||||
**peft_kwargs,
|
||||
)
|
||||
model = get_peft_model(model, lora_config)
|
||||
|
||||
if (not finetuning_args.pure_bf16) and (not finetuning_args.use_badam):
|
||||
|
|
|
@ -191,6 +191,7 @@ def load_mm_model(
|
|||
finetuning_args: "FinetuningArguments",
|
||||
is_trainable: bool = False,
|
||||
add_valuehead: bool = False,
|
||||
use_clm=True,
|
||||
) -> "AutoModelForVision2Seq":
|
||||
r"""
|
||||
Loads pretrained model. Must after load_tokenizer.
|
||||
|
@ -231,7 +232,7 @@ def load_mm_model(
|
|||
patch_model(model, tokenizer, model_args, is_trainable)
|
||||
register_autoclass(config, model, tokenizer)
|
||||
|
||||
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable)
|
||||
model = init_mm_adapter(model, model_args, finetuning_args, is_trainable, use_clm)
|
||||
|
||||
if not is_trainable:
|
||||
model.requires_grad_(False)
|
||||
|
|
|
@ -1,69 +1,29 @@
|
|||
import json
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset as Dataset_torch
|
||||
from datasets import Dataset
|
||||
from PIL import Image
|
||||
from transformers import AutoProcessor
|
||||
|
||||
|
||||
class ImageCaptioningDataset(Dataset_torch):
|
||||
def __init__(self, dataset: Dataset, image_path: str, processor: AutoProcessor):
|
||||
self.processor = processor
|
||||
self.dataset = dataset
|
||||
self.image_path = image_path
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
|
||||
def __getitem__(self, idx):
|
||||
source = self.dataset[idx]
|
||||
image_id = source['image']
|
||||
image = Image.open(os.path.join(self.image_path, image_id))
|
||||
convs = source['conversations']
|
||||
prompt = convs[0]['value']
|
||||
label = convs[1]['value']
|
||||
image_inputs = self.processor(image, return_tensors="pt")
|
||||
image_inputs = {k: v.squeeze() for k, v in image_inputs.items()}
|
||||
inputs = {
|
||||
"input_ids": prompt,
|
||||
"labels": label,
|
||||
}
|
||||
for key in image_inputs:
|
||||
inputs[key] = image_inputs[key]
|
||||
return inputs
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataCollatorForVis2Seq:
|
||||
processor: AutoProcessor
|
||||
use_qformer: bool = False
|
||||
|
||||
def __call__(self, features, return_tensors=None):
|
||||
processed_batch = {}
|
||||
for key in features[0].keys():
|
||||
if key == 'pixel_values':
|
||||
processed_batch[key] = torch.stack([example[key] for example in features])
|
||||
elif key == 'input_ids':
|
||||
text_inputs = self.processor.tokenizer(
|
||||
[example[key] for example in features], padding="max_length", return_tensors="pt",
|
||||
max_length=512,
|
||||
)
|
||||
processed_batch["input_ids"] = text_inputs["input_ids"]
|
||||
processed_batch["attention_mask"] = text_inputs["attention_mask"]
|
||||
if self.use_qformer:
|
||||
qformer_text_inputs = self.processor.qformer_tokenizer(
|
||||
[example[key] for example in features], padding="max_length", return_tensors="pt",
|
||||
max_length=512,
|
||||
)
|
||||
processed_batch["qformer_input_ids"] = qformer_text_inputs["input_ids"]
|
||||
processed_batch["qformer_attention_mask"] = qformer_text_inputs["attention_mask"]
|
||||
elif key == 'labels':
|
||||
text_inputs = self.processor.tokenizer(
|
||||
[example[key] for example in features], padding="max_length", return_tensors="pt",
|
||||
max_length=512,
|
||||
)
|
||||
processed_batch["labels"] = text_inputs["input_ids"]
|
||||
return processed_batch
|
||||
def __call__(self, examples):
|
||||
texts = []
|
||||
images = []
|
||||
for example in examples:
|
||||
if len(example["images"]) > 1:
|
||||
raise ValueError("This collator only supports one image per example")
|
||||
messages = example["messages"]
|
||||
text = self.processor.tokenizer.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=False
|
||||
)
|
||||
texts.append(text)
|
||||
images.append(example["images"][0])
|
||||
|
||||
batch = self.processor(text=texts, images=images, return_tensors="pt", padding=True)
|
||||
|
||||
labels = batch["input_ids"].clone()
|
||||
if self.processor.tokenizer.pad_token_id is not None:
|
||||
labels[labels == self.processor.tokenizer.pad_token_id] = -100
|
||||
batch["labels"] = labels
|
||||
|
||||
return batch
|
||||
|
|
|
@ -5,7 +5,7 @@ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
|
|||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers import Seq2SeqTrainer
|
||||
from transformers import Seq2SeqTrainer, Trainer
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
|
@ -32,23 +32,6 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
# def compute_loss(self, model, inputs, return_outputs=False):
|
||||
# print(inputs.keys())
|
||||
# device = "cuda"
|
||||
# input_ids = inputs.get("input_ids").to(device)
|
||||
# pixel_values = inputs.get("pixel_values").to(device, torch.float16)
|
||||
# attention_mask = inputs.get("attention_mask").to(device)
|
||||
# labels = inputs.get("labels").to(device)
|
||||
#
|
||||
# outputs = model(input_ids=input_ids,
|
||||
# pixel_values=pixel_values,
|
||||
# labels=labels,
|
||||
# # attention_mask=attention_mask,
|
||||
# )
|
||||
# loss = outputs.loss
|
||||
# print("Loss:", loss.item())
|
||||
# return (loss, outputs) if return_outputs else loss
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
|
@ -59,79 +42,3 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||
) -> "torch.optim.lr_scheduler.LRScheduler":
|
||||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: "torch.nn.Module",
|
||||
inputs: Dict[str, Union[torch.Tensor, Any]],
|
||||
prediction_loss_only: bool,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
||||
r"""
|
||||
Removes the prompt part in the generated tokens.
|
||||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
labels = inputs["labels"].detach().clone() if "labels" in inputs else None # backup labels
|
||||
if self.args.predict_with_generate:
|
||||
assert self.tokenizer.padding_side == "left", "This method only accepts left-padded tensor."
|
||||
prompt_len, label_len = inputs["input_ids"].size(-1), inputs["labels"].size(-1)
|
||||
if prompt_len > label_len:
|
||||
inputs["labels"] = self._pad_tensors_to_target_len(inputs["labels"], inputs["input_ids"])
|
||||
if label_len > prompt_len: # truncate the labels instead of padding the inputs (llama2 fp16 compatibility)
|
||||
inputs["labels"] = inputs["labels"][:, :prompt_len]
|
||||
|
||||
loss, generated_tokens, _ = super().prediction_step( # ignore the returned labels (may be truncated)
|
||||
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
||||
)
|
||||
if generated_tokens is not None and self.args.predict_with_generate:
|
||||
generated_tokens[:, :prompt_len] = self.tokenizer.pad_token_id
|
||||
generated_tokens = generated_tokens.contiguous()
|
||||
|
||||
return loss, generated_tokens, labels
|
||||
|
||||
def _pad_tensors_to_target_len(self, src_tensor: torch.Tensor, tgt_tensor: torch.Tensor) -> torch.Tensor:
|
||||
r"""
|
||||
Pads the tensor to the same length as the target tensor.
|
||||
"""
|
||||
assert self.tokenizer.pad_token_id is not None, "Pad token is required."
|
||||
padded_tensor = self.tokenizer.pad_token_id * torch.ones_like(tgt_tensor)
|
||||
padded_tensor[:, -src_tensor.shape[-1]:] = src_tensor # adopt left-padding
|
||||
return padded_tensor.contiguous() # in contiguous memory
|
||||
|
||||
def save_predictions(self, predict_results: "PredictionOutput") -> None:
|
||||
r"""
|
||||
Saves model predictions to `output_dir`.
|
||||
|
||||
A custom behavior that not contained in Seq2SeqTrainer.
|
||||
"""
|
||||
if not self.is_world_process_zero():
|
||||
return
|
||||
|
||||
output_prediction_file = os.path.join(self.args.output_dir, "generated_predictions.jsonl")
|
||||
logger.info(f"Saving prediction results to {output_prediction_file}")
|
||||
|
||||
labels = np.where(
|
||||
predict_results.label_ids != IGNORE_INDEX, predict_results.label_ids, self.tokenizer.pad_token_id
|
||||
)
|
||||
preds = np.where(
|
||||
predict_results.predictions != IGNORE_INDEX, predict_results.predictions, self.tokenizer.pad_token_id
|
||||
)
|
||||
|
||||
for i in range(len(preds)):
|
||||
pad_len = np.nonzero(preds[i] != self.tokenizer.pad_token_id)[0]
|
||||
if len(pad_len):
|
||||
preds[i] = np.concatenate(
|
||||
(preds[i][pad_len[0]:], preds[i][: pad_len[0]]), axis=-1
|
||||
) # move pad token to last
|
||||
|
||||
decoded_labels = self.tokenizer.batch_decode(
|
||||
labels, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
||||
)
|
||||
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
||||
|
||||
with open(output_prediction_file, "w", encoding="utf-8") as writer:
|
||||
res: List[str] = []
|
||||
for label, pred in zip(decoded_labels, decoded_preds):
|
||||
res.append(json.dumps({"label": label, "predict": pred}, ensure_ascii=False))
|
||||
writer.write("\n".join(res))
|
||||
|
|
|
@ -1,21 +1,14 @@
|
|||
# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
|
||||
import os
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import torch
|
||||
from PIL import Image
|
||||
from torch.utils.data import Dataset
|
||||
from transformers import DataCollatorForSeq2Seq, LlavaNextForConditionalGeneration, AutoModelForVision2Seq
|
||||
|
||||
from ...data import split_dataset, get_mm_dataset
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.misc import get_logits_processor
|
||||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer, load_processor, load_mm_model
|
||||
from ...model import load_tokenizer, load_processor, load_mm_model
|
||||
from ..utils import create_modelcard_and_push
|
||||
from .metric import ComputeMetrics
|
||||
from .trainer import CustomSeq2SeqTrainer
|
||||
from .collator import DataCollatorForVis2Seq, ImageCaptioningDataset
|
||||
from .collator import DataCollatorForVis2Seq
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import Seq2SeqTrainingArguments, TrainerCallback
|
||||
|
@ -32,28 +25,27 @@ def run_sft_mm(
|
|||
callbacks: Optional[List["TrainerCallback"]] = None,
|
||||
):
|
||||
processor = load_processor(model_args)
|
||||
tokenizer = processor.tokenizer
|
||||
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
CHAT_TEMPLATE = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. {% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"""
|
||||
tokenizer.chat_template = CHAT_TEMPLATE
|
||||
processor.tokenizer = tokenizer
|
||||
use_clm = True
|
||||
if "blip" in model_args.model_name_or_path:
|
||||
use_clm = False
|
||||
model = load_mm_model(processor, model_args, finetuning_args, training_args.do_train, use_clm=use_clm)
|
||||
dataset = get_mm_dataset(processor, model_args, data_args, training_args, stage="sft")
|
||||
if training_args.predict_with_generate:
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
splited_dataset = split_dataset(dataset, data_args, training_args)
|
||||
splited_dataset['train_dataset'].set_format(type=splited_dataset['train_dataset'].format["type"],
|
||||
columns=list(splited_dataset['train_dataset'].features.keys()))
|
||||
splited_dataset['eval_dataset'].set_format(type=splited_dataset['eval_dataset'].format["type"],
|
||||
columns=list(splited_dataset['eval_dataset'].features.keys()))
|
||||
train_dataset = ImageCaptioningDataset(splited_dataset['train_dataset'], data_args.image_path, processor)
|
||||
eval_dataset = ImageCaptioningDataset(splited_dataset['eval_dataset'], data_args.image_path, processor)
|
||||
train_dataset = dataset
|
||||
eval_dataset = dataset
|
||||
data_collator = DataCollatorForVis2Seq(
|
||||
processor=processor,
|
||||
use_qformer=model_args.use_qformer,
|
||||
)
|
||||
|
||||
# Override the decoding parameters of Seq2SeqTrainer
|
||||
training_args.generation_max_length = training_args.generation_max_length or data_args.cutoff_len
|
||||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
|
@ -67,7 +59,6 @@ def run_sft_mm(
|
|||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
gen_kwargs = generating_args.to_dict()
|
||||
gen_kwargs["eos_token_id"] = [tokenizer.eos_token_id] + tokenizer.additional_special_tokens_ids
|
||||
|
|
Loading…
Reference in New Issue