add loftq
This commit is contained in:
parent
bfdee1608f
commit
d4c351f1ec
Binary file not shown.
Before Width: | Height: | Size: 173 KiB After Width: | Height: | Size: 145 KiB |
|
@ -119,16 +119,6 @@ def load_model_and_tokenizer(
|
|||
model_args.rope_scaling, scaling_factor
|
||||
))
|
||||
|
||||
# Set FlashAttention-2
|
||||
if model_args.flash_attn:
|
||||
if not is_flash_attn2_available():
|
||||
logger.warning("FlashAttention-2 is not installed.")
|
||||
elif getattr(config, "model_type", None) == "qwen":
|
||||
logger.info("Current model automatically enables FlashAttention if installed.")
|
||||
else:
|
||||
setattr(config, "attn_implementation", "flash_attention_2")
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
|
||||
# Set shift short attention (S^2-Attn)
|
||||
if is_trainable and model_args.shift_attn:
|
||||
logger.warning("Shift short attention is temporarily invalid due to breaking changes.")
|
||||
|
@ -138,10 +128,19 @@ def load_model_and_tokenizer(
|
|||
# else:
|
||||
# logger.warning("Current model does not support shift short attention.")
|
||||
|
||||
# Set FlashAttention-2
|
||||
if model_args.flash_attn:
|
||||
if not is_flash_attn2_available():
|
||||
logger.warning("FlashAttention-2 is not installed.")
|
||||
elif getattr(config, "model_type", None) == "qwen":
|
||||
logger.info("Current model automatically enables FlashAttention if installed.")
|
||||
else:
|
||||
config_kwargs["use_flash_attention_2"] = True
|
||||
logger.info("Using FlashAttention-2 for faster training and inference.")
|
||||
|
||||
# Quantization configurations (using gptq or awq)
|
||||
if getattr(config, "quantization_config", None):
|
||||
if model_args.quantization_bit is not None: # remove bnb quantization
|
||||
model_args.quantization_bit = None
|
||||
model_args.quantization_bit = None # remove bnb quantization
|
||||
config_kwargs["device_map"] = {"": get_current_device()}
|
||||
quantization_config = getattr(config, "quantization_config", None)
|
||||
logger.info("Loading {}-bit pre-quantized model.".format(quantization_config.get("bits", -1)))
|
||||
|
|
|
@ -26,7 +26,7 @@ def calculate_lr(
|
|||
cutoff_len: int, # i.e. maximum input length during training
|
||||
batch_size: int, # total batch size, namely (batch size * gradient accumulation * world size)
|
||||
is_mistral: bool, # mistral model uses a smaller learning rate,
|
||||
dataset_dir: Optional[str] = "data"
|
||||
dataset_dir: Optional[str] = "../data"
|
||||
):
|
||||
model_args, data_args, training_args, finetuning_args, _ = get_train_args(dict(
|
||||
stage="sft",
|
||||
|
@ -38,7 +38,7 @@ def calculate_lr(
|
|||
output_dir="dummy_dir"
|
||||
))
|
||||
trainset = get_dataset(model_args, data_args)
|
||||
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, stage="sft")
|
||||
_, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, is_trainable=False, add_valuehead=False)
|
||||
trainset = preprocess_dataset(trainset, tokenizer, data_args, training_args, stage="sft")
|
||||
data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX)
|
||||
dataloader = DataLoader(
|
||||
|
|
|
@ -0,0 +1,77 @@
|
|||
# coding=utf-8
|
||||
# Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ)
|
||||
# Usage: python loftq_init.py --model_name_or_path path_to_model --save_dir output_dir
|
||||
# Inspired by: https://github.com/huggingface/peft/blob/main/examples/loftq_finetuning/quantize_save_load.py
|
||||
|
||||
import os
|
||||
import fire
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from typing import Optional
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model
|
||||
|
||||
|
||||
class Shell(nn.Module):
|
||||
|
||||
def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(weight, requires_grad=False)
|
||||
if bias is not None:
|
||||
self.bias = nn.Parameter(bias, requires_grad=False)
|
||||
|
||||
|
||||
def unwrap_model(model: nn.Module, pattern=".base_layer") -> None:
|
||||
for name in set([k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k]):
|
||||
parent_name = ".".join(name.split(".")[:-1])
|
||||
child_name = name.split(".")[-1]
|
||||
parent_module = model.get_submodule(parent_name)
|
||||
child_module = getattr(parent_module, child_name)
|
||||
base_layer = getattr(child_module, "base_layer")
|
||||
weight = getattr(base_layer, "weight", None)
|
||||
bias = getattr(base_layer, "bias", None)
|
||||
setattr(parent_module, child_name, Shell(weight, bias))
|
||||
|
||||
print("Model unwrapped.")
|
||||
|
||||
|
||||
def quantize_loftq(
|
||||
model_name_or_path: str,
|
||||
save_dir: str,
|
||||
loftq_bits: Optional[int] = 4,
|
||||
loftq_iter: Optional[int] = 1,
|
||||
lora_alpha: Optional[int] = None,
|
||||
lora_rank: Optional[int] = 16,
|
||||
lora_target: Optional[str] = "q_proj,v_proj"
|
||||
):
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
|
||||
loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter)
|
||||
lora_config = LoraConfig(
|
||||
task_type=TaskType.CAUSAL_LM,
|
||||
inference_mode=True,
|
||||
r=lora_rank,
|
||||
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
|
||||
lora_dropout=0.1,
|
||||
target_modules=[name.strip() for name in lora_target.split(",")],
|
||||
init_lora_weights="loftq",
|
||||
loftq_config=loftq_config
|
||||
)
|
||||
|
||||
# Init LoftQ model
|
||||
lora_model = get_peft_model(model, lora_config)
|
||||
base_model = lora_model.get_base_model()
|
||||
|
||||
# Save LoftQ model
|
||||
setattr(lora_model.base_model.peft_config["default"], "base_model_name_or_path", save_dir)
|
||||
setattr(lora_model.base_model.peft_config["default"], "init_lora_weights", True)
|
||||
lora_model.save_pretrained(os.path.join(save_dir, "adapters"))
|
||||
|
||||
# Save base model
|
||||
unwrap_model(base_model)
|
||||
base_model.save_pretrained(save_dir)
|
||||
tokenizer.save_pretrained(save_dir)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
fire.Fire(quantize_loftq)
|
Loading…
Reference in New Issue