support batch_eval_metrics, fix #4826
This commit is contained in:
parent
bda302fbfb
commit
d774b94f12
|
@ -17,7 +17,7 @@
|
|||
|
||||
import gc
|
||||
import os
|
||||
from typing import TYPE_CHECKING, Tuple
|
||||
from typing import TYPE_CHECKING, Tuple, Union
|
||||
|
||||
import torch
|
||||
import transformers.dynamic_module_utils
|
||||
|
@ -43,6 +43,8 @@ except Exception:
|
|||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ..hparams import ModelArguments
|
||||
|
||||
|
||||
|
@ -178,6 +180,17 @@ def is_gpu_or_npu_available() -> bool:
|
|||
return is_torch_npu_available() or is_torch_cuda_available()
|
||||
|
||||
|
||||
def numpify(inputs: Union["NDArray", "torch.Tensor"]) -> "NDArray":
|
||||
if isinstance(inputs, torch.Tensor):
|
||||
inputs = inputs.cpu()
|
||||
if inputs.dtype == torch.bfloat16: # numpy does not support bfloat16 until 1.21.4
|
||||
inputs = inputs.to(torch.float32)
|
||||
|
||||
inputs = inputs.numpy()
|
||||
|
||||
return inputs
|
||||
|
||||
|
||||
def skip_check_imports() -> None:
|
||||
if os.environ.get("FORCE_CHECK_IMPORTS", "0").lower() not in ["true", "1"]:
|
||||
transformers.dynamic_module_utils.check_imports = get_relative_imports
|
||||
|
|
|
@ -334,6 +334,10 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
|
|||
default=False,
|
||||
metadata={"help": "Whether or not to train the multimodal projector for MLLM only."},
|
||||
)
|
||||
compute_accuracy: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to compute the token-level accuracy at evaluation."},
|
||||
)
|
||||
plot_loss: bool = field(
|
||||
default=False,
|
||||
metadata={"help": "Whether or not to save the training loss curves."},
|
||||
|
|
|
@ -211,6 +211,9 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||
if training_args.predict_with_generate and data_args.eval_dataset is None:
|
||||
raise ValueError("Cannot use `predict_with_generate` if `eval_dataset` is None.")
|
||||
|
||||
if training_args.predict_with_generate and finetuning_args.compute_accuracy:
|
||||
raise ValueError("Cannot use `predict_with_generate` and `compute_accuracy` together.")
|
||||
|
||||
if training_args.do_train and model_args.quantization_device_map == "auto":
|
||||
raise ValueError("Cannot use device map for quantized models in training.")
|
||||
|
||||
|
|
|
@ -12,14 +12,30 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ...extras.misc import numpify
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from transformers import EvalPrediction
|
||||
|
||||
|
||||
def compute_accuracy(eval_preds: "EvalPrediction") -> Dict[str, float]:
|
||||
return {"accuracy": np.mean(eval_preds.predictions[0] > eval_preds.predictions[1])}
|
||||
@dataclass
|
||||
class ComputeAccuracy:
|
||||
def __post_init__(self):
|
||||
self.score_dict = {"accuracy": []}
|
||||
|
||||
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]:
|
||||
chosen_scores, rejected_scores = numpify(eval_preds.predictions[0]), numpify(eval_preds.predictions[1])
|
||||
if not chosen_scores.shape:
|
||||
self.score_dict["accuracy"].append(chosen_scores > rejected_scores)
|
||||
else:
|
||||
for i in range(len(chosen_scores)):
|
||||
self.score_dict["accuracy"].append(chosen_scores[i] > rejected_scores[i])
|
||||
|
||||
if compute_result:
|
||||
return {"accuracy": float(np.mean(self.score_dict["accuracy"]))}
|
||||
|
|
|
@ -22,7 +22,7 @@ from ...extras.ploting import plot_loss
|
|||
from ...model import load_model, load_tokenizer
|
||||
from ..callbacks import fix_valuehead_checkpoint
|
||||
from ..trainer_utils import create_modelcard_and_push
|
||||
from .metric import compute_accuracy
|
||||
from .metric import ComputeAccuracy
|
||||
from .trainer import PairwiseTrainer
|
||||
|
||||
|
||||
|
@ -55,7 +55,7 @@ def run_rm(
|
|||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
compute_metrics=compute_accuracy,
|
||||
compute_metrics=ComputeAccuracy(),
|
||||
**dataset_module,
|
||||
**tokenizer_module,
|
||||
)
|
||||
|
|
|
@ -17,13 +17,14 @@
|
|||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import TYPE_CHECKING, Dict
|
||||
from typing import TYPE_CHECKING, Dict, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from transformers.utils import is_jieba_available, is_nltk_available
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.misc import numpify
|
||||
from ...extras.packages import is_rouge_available
|
||||
|
||||
|
||||
|
@ -43,17 +44,6 @@ if is_rouge_available():
|
|||
from rouge_chinese import Rouge
|
||||
|
||||
|
||||
def compute_accuracy(eval_preds: "EvalPrediction") -> Dict[str, float]:
|
||||
preds, labels = eval_preds.predictions, eval_preds.label_ids
|
||||
accuracies = []
|
||||
for i in range(len(preds)):
|
||||
pred, label = preds[i, :-1], labels[i, 1:]
|
||||
label_mask = label != IGNORE_INDEX
|
||||
accuracies.append(np.mean(pred[label_mask] == label[label_mask]))
|
||||
|
||||
return {"accuracy": float(np.mean(accuracies))}
|
||||
|
||||
|
||||
def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "torch.Tensor":
|
||||
if isinstance(logits, (list, tuple)):
|
||||
if logits[0].dim() == 3: # (batch_size, seq_len, vocab_size)
|
||||
|
@ -68,19 +58,34 @@ def eval_logit_processor(logits: "torch.Tensor", labels: "torch.Tensor") -> "tor
|
|||
|
||||
|
||||
@dataclass
|
||||
class ComputeMetrics:
|
||||
class ComputeAccuracy:
|
||||
def __post_init__(self):
|
||||
self.score_dict = {"accuracy": []}
|
||||
|
||||
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]:
|
||||
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids)
|
||||
for i in range(len(preds)):
|
||||
pred, label = preds[i, :-1], labels[i, 1:]
|
||||
label_mask = label != IGNORE_INDEX
|
||||
self.score_dict["accuracy"].append(np.mean(pred[label_mask] == label[label_mask]))
|
||||
|
||||
if compute_result:
|
||||
return {"accuracy": float(np.mean(self.score_dict["accuracy"]))}
|
||||
|
||||
|
||||
@dataclass
|
||||
class ComputeSimilarity:
|
||||
r"""
|
||||
Wraps the tokenizer into metric functions, used in Seq2SeqPeftTrainer.
|
||||
Wraps the tokenizer into metric functions, used in CustomSeq2SeqTrainer.
|
||||
"""
|
||||
|
||||
tokenizer: "PreTrainedTokenizer"
|
||||
|
||||
def __call__(self, eval_preds: "EvalPrediction") -> Dict[str, float]:
|
||||
r"""
|
||||
Uses the model predictions to compute metrics.
|
||||
"""
|
||||
preds, labels = eval_preds.predictions, eval_preds.label_ids
|
||||
score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
|
||||
def __post_init__(self):
|
||||
self.score_dict = {"rouge-1": [], "rouge-2": [], "rouge-l": [], "bleu-4": []}
|
||||
|
||||
def __call__(self, eval_preds: "EvalPrediction", compute_result: bool = True) -> Optional[Dict[str, float]]:
|
||||
preds, labels = numpify(eval_preds.predictions), numpify(eval_preds.label_ids)
|
||||
|
||||
preds = np.where(preds != IGNORE_INDEX, preds, self.tokenizer.pad_token_id)
|
||||
labels = np.where(labels != IGNORE_INDEX, labels, self.tokenizer.pad_token_id)
|
||||
|
@ -100,9 +105,10 @@ class ComputeMetrics:
|
|||
result = scores[0]
|
||||
|
||||
for k, v in result.items():
|
||||
score_dict[k].append(round(v["f"] * 100, 4))
|
||||
self.score_dict[k].append(round(v["f"] * 100, 4))
|
||||
|
||||
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
|
||||
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
||||
self.score_dict["bleu-4"].append(round(bleu_score * 100, 4))
|
||||
|
||||
return {k: float(np.mean(v)) for k, v in score_dict.items()}
|
||||
if compute_result:
|
||||
return {k: float(np.mean(v)) for k, v in self.score_dict.items()}
|
||||
|
|
|
@ -23,7 +23,7 @@ from ...extras.misc import get_logits_processor
|
|||
from ...extras.ploting import plot_loss
|
||||
from ...model import load_model, load_tokenizer
|
||||
from ..trainer_utils import create_modelcard_and_push
|
||||
from .metric import ComputeMetrics, compute_accuracy, eval_logit_processor
|
||||
from .metric import ComputeAccuracy, ComputeSimilarity, eval_logit_processor
|
||||
from .trainer import CustomSeq2SeqTrainer
|
||||
|
||||
|
||||
|
@ -46,15 +46,12 @@ def run_sft(
|
|||
dataset_module = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
|
||||
|
||||
if training_args.predict_with_generate:
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
|
||||
if getattr(model, "is_quantized", False) and not training_args.do_train:
|
||||
setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction
|
||||
|
||||
data_collator = SFTDataCollatorWith4DAttentionMask(
|
||||
tokenizer=tokenizer,
|
||||
pad_to_multiple_of=8 if tokenizer.padding_side == "right" else None, # for shift short attention
|
||||
pad_to_multiple_of=8 if training_args.do_train else None, # for shift short attention
|
||||
label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id,
|
||||
block_diag_attn=model_args.block_diag_attn,
|
||||
attn_implementation=getattr(model.config, "_attn_implementation", None),
|
||||
|
@ -66,6 +63,14 @@ def run_sft(
|
|||
training_args.generation_num_beams = data_args.eval_num_beams or training_args.generation_num_beams
|
||||
training_args.remove_unused_columns = False if model_args.visual_inputs else training_args.remove_unused_columns
|
||||
|
||||
# Metric utils
|
||||
metric_module = {}
|
||||
if training_args.predict_with_generate:
|
||||
metric_module["compute_metrics"] = ComputeSimilarity(tokenizer=tokenizer)
|
||||
elif finetuning_args.compute_accuracy:
|
||||
metric_module["compute_metrics"] = ComputeAccuracy()
|
||||
metric_module["preprocess_logits_for_metrics"] = eval_logit_processor
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = CustomSeq2SeqTrainer(
|
||||
model=model,
|
||||
|
@ -73,10 +78,9 @@ def run_sft(
|
|||
finetuning_args=finetuning_args,
|
||||
data_collator=data_collator,
|
||||
callbacks=callbacks,
|
||||
compute_metrics=ComputeMetrics(tokenizer) if training_args.predict_with_generate else compute_accuracy,
|
||||
preprocess_logits_for_metrics=None if training_args.predict_with_generate else eval_logit_processor,
|
||||
**dataset_module,
|
||||
**tokenizer_module,
|
||||
**metric_module,
|
||||
)
|
||||
|
||||
# Keyword arguments for `model.generate`
|
||||
|
@ -95,6 +99,9 @@ def run_sft(
|
|||
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
|
||||
plot_loss(training_args.output_dir, keys=["loss", "eval_loss", "eval_accuracy"])
|
||||
|
||||
if training_args.predict_with_generate:
|
||||
tokenizer.padding_side = "left" # use left-padding in generation
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
|
||||
|
|
Loading…
Reference in New Issue