update examples
This commit is contained in:
parent
694a05fd04
commit
ddec9e1b84
|
@ -1,7 +1,7 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
|
@ -10,7 +10,7 @@ badam_switch_mode: descending
|
|||
badam_switch_interval: 50
|
||||
badam_verbose: 2
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -18,14 +18,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -34,7 +34,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
pure_bf16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,17 +1,17 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
quantization_bit: 4
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# ddp
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -19,14 +19,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -35,7 +35,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
|
@ -11,7 +11,7 @@ galore_target: mlp,self_attn
|
|||
galore_rank: 128
|
||||
galore_scale: 2.0
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -19,14 +19,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 1
|
||||
learning_rate: 0.0001
|
||||
|
@ -35,7 +35,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
pure_bf16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: models/llama3-8b-instruct-pro
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: freeze
|
||||
|
@ -9,7 +9,7 @@ freeze_trainable_layers: 8
|
|||
freeze_trainable_modules: all
|
||||
use_llama_pro: true
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -17,14 +17,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -33,7 +33,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
loraplus_lr_ratio: 16.0
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -16,14 +16,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
mixture_of_depths: convert
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,14 +15,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b-mod/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
optim: paged_adamw_8bit
|
||||
|
@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
pure_bf16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: saves/llama3-8b/full/sft
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_predict: true
|
||||
finetuning_type: full
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -14,10 +14,10 @@ max_samples: 50
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/predict
|
||||
overwrite_output_dir: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
per_device_eval_batch_size: 1
|
||||
predict_with_generate: true
|
||||
|
|
|
@ -1,16 +1,16 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
|
||||
# ddp
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -18,14 +18,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/full/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 2
|
||||
learning_rate: 0.0001
|
||||
|
@ -34,7 +34,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,16 +1,16 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# ddp
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -18,14 +18,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 2
|
||||
learning_rate: 0.0001
|
||||
|
@ -34,7 +34,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,17 +1,17 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# ddp
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -19,14 +19,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 2
|
||||
learning_rate: 0.0001
|
||||
|
@ -35,7 +35,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,17 +1,17 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# ddp
|
||||
### ddp
|
||||
ddp_timeout: 180000000
|
||||
deepspeed: examples/deepspeed/ds_z0_config.json
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -19,14 +19,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 2
|
||||
learning_rate: 0.0001
|
||||
|
@ -35,7 +35,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: dpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
dpo_ftx: 1.0
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -16,14 +16,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/dpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
|
@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,19 +1,19 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
|
||||
# method
|
||||
### method
|
||||
finetuning_type: lora
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
task: mmlu
|
||||
split: test
|
||||
template: fewshot
|
||||
lang: en
|
||||
n_shot: 5
|
||||
|
||||
# output
|
||||
### output
|
||||
save_dir: saves/llama3-8b/lora/eval
|
||||
|
||||
# eval
|
||||
### eval
|
||||
batch_size: 4
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: orpo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,14 +15,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/orpo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
|
@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
reward_model: saves/llama3-8b/lora/reward
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: ppo
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -16,14 +16,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/ppo
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
|
@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# generate
|
||||
### generate
|
||||
max_new_tokens: 512
|
||||
top_k: 0
|
||||
top_p: 0.9
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_predict: true
|
||||
finetuning_type: lora
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,10 +15,10 @@ max_samples: 50
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/predict
|
||||
overwrite_output_dir: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
per_device_eval_batch_size: 1
|
||||
predict_with_generate: true
|
||||
|
|
|
@ -1,27 +1,27 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: pt
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: c4_demo
|
||||
cutoff_len: 1024
|
||||
max_samples: 1000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -30,7 +30,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: rm
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: orca_rlhf
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,14 +15,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/reward
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.00001
|
||||
|
@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,14 +15,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -16,6 +16,6 @@ overwrite_cache: true
|
|||
preprocessing_num_workers: 16
|
||||
tokenized_path: saves/llama3-8b/dataset/sft
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
overwrite_output_dir: true
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: llava-hf/llava-1.5-7b-hf
|
||||
visual_inputs: true
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: mllm_demo
|
||||
template: vicuna
|
||||
cutoff_len: 1024
|
||||
|
@ -16,14 +16,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llava1_5-7b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
template: llama3
|
||||
|
||||
# export
|
||||
### export
|
||||
export_dir: models/llama3_gptq
|
||||
export_quantization_bit: 4
|
||||
export_quantization_dataset: data/c4_demo.json
|
||||
|
|
|
@ -1,12 +1,12 @@
|
|||
# Note: DO NOT use quantized model or quantization_bit when merging lora adapters
|
||||
### Note: DO NOT use quantized model or quantization_bit when merging lora adapters
|
||||
|
||||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
adapter_name_or_path: saves/llama3-8b/lora/sft
|
||||
template: llama3
|
||||
finetuning_type: lora
|
||||
|
||||
# export
|
||||
### export
|
||||
export_dir: models/llama3_lora_sft
|
||||
export_size: 2
|
||||
export_device: cpu
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,14 +15,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,14 +15,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,14 +1,14 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
||||
quantization_bit: 4
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -16,14 +16,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -32,7 +32,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
|
@ -1,13 +1,13 @@
|
|||
# model
|
||||
### model
|
||||
model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
|
||||
|
||||
# method
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: q_proj,v_proj
|
||||
|
||||
# dataset
|
||||
### dataset
|
||||
dataset: identity,alpaca_gpt4_en
|
||||
template: llama3
|
||||
cutoff_len: 1024
|
||||
|
@ -15,14 +15,14 @@ max_samples: 1000
|
|||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
# output
|
||||
### output
|
||||
output_dir: saves/llama3-8b/lora/sft
|
||||
logging_steps: 10
|
||||
save_steps: 500
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
# train
|
||||
### train
|
||||
per_device_train_batch_size: 1
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 0.0001
|
||||
|
@ -31,7 +31,7 @@ lr_scheduler_type: cosine
|
|||
warmup_steps: 0.1
|
||||
fp16: true
|
||||
|
||||
# eval
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 1
|
||||
evaluation_strategy: steps
|
||||
|
|
Loading…
Reference in New Issue