update readme
This commit is contained in:
parent
5b897e7c35
commit
e507e60638
10
CITATION.cff
10
CITATION.cff
|
@ -12,12 +12,14 @@ authors:
|
|||
given-names: "Yanhan"
|
||||
- family-names: "Luo"
|
||||
given-names: "Zheyan"
|
||||
- family-names: "Feng"
|
||||
given-names: "Zhangchi"
|
||||
- family-names: "Ma"
|
||||
given-names: "Yongqiang"
|
||||
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||
url: "https://arxiv.org/abs/2403.13372"
|
||||
preferred-citation:
|
||||
type: article
|
||||
type: conference-paper
|
||||
authors:
|
||||
- family-names: "Zheng"
|
||||
given-names: "Yaowei"
|
||||
|
@ -29,9 +31,13 @@ preferred-citation:
|
|||
given-names: "Yanhan"
|
||||
- family-names: "Luo"
|
||||
given-names: "Zheyan"
|
||||
- family-names: "Feng"
|
||||
given-names: "Zhangchi"
|
||||
- family-names: "Ma"
|
||||
given-names: "Yongqiang"
|
||||
journal: "arXiv preprint arXiv:2403.13372"
|
||||
booktitle: "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)"
|
||||
title: "LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models"
|
||||
url: "https://arxiv.org/abs/2403.13372"
|
||||
year: 2024
|
||||
publisher: "Association for Computational Linguistics"
|
||||
address: "Bangkok, Thailand"
|
||||
|
|
49
README.md
49
README.md
|
@ -4,7 +4,7 @@
|
|||
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
|
||||
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
|
||||
[![PyPI](https://img.shields.io/pypi/v/llamafactory)](https://pypi.org/project/llamafactory/)
|
||||
[![Citation](https://img.shields.io/badge/citation-44-green)](#projects-using-llama-factory)
|
||||
[![Citation](https://img.shields.io/badge/citation-63-green)](#projects-using-llama-factory)
|
||||
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
|
||||
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
|
||||
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
|
||||
|
@ -15,7 +15,7 @@
|
|||
|
||||
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
|
||||
|
||||
👋 Join our [WeChat](assets/wechat.jpg).
|
||||
👋 Join our [WeChat](assets/wechat.jpg) or [NPU user group](assets/wechat_npu.jpg).
|
||||
|
||||
\[ English | [中文](README_zh.md) \]
|
||||
|
||||
|
@ -360,8 +360,6 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
|
|||
|
||||
<details><summary>For Ascend NPU users</summary>
|
||||
|
||||
Join [NPU user group](assets/wechat_npu.jpg).
|
||||
|
||||
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e '.[torch-npu,metrics]'`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
|
||||
|
||||
```bash
|
||||
|
@ -503,38 +501,55 @@ If you have a project that should be incorporated, please contact via email or c
|
|||
1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
|
||||
1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
|
||||
1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
|
||||
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||
1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
|
||||
1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
|
||||
1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
|
||||
1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
|
||||
1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
|
||||
1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
|
||||
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. 2024. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||
1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
|
||||
1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
|
||||
1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
|
||||
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
|
||||
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||
1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
|
||||
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
|
||||
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
|
||||
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
|
||||
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
|
||||
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||
1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
|
||||
1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
|
||||
1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
|
||||
1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
|
||||
1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
|
||||
1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
|
||||
1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
|
||||
1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
|
||||
1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
|
||||
1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
|
||||
1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
|
||||
1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
|
||||
1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
|
||||
1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
|
||||
1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
|
||||
1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
|
||||
1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
|
||||
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: A large language model for Astronomy, based on ChatGLM2-6B and Qwen-14B.
|
||||
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: A large language model specialized in Chinese legal domain, based on Baichuan-13B, is capable of retrieving and reasoning on legal knowledge.
|
||||
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: A large language model specialized in Chinese medical domain, based on Baichuan-7B and ChatGLM-6B.
|
||||
|
@ -542,6 +557,8 @@ If you have a project that should be incorporated, please contact via email or c
|
|||
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**: A series of MBTI Personality large language models, capable of giving any LLM 16 different personality types based on different datasets and training methods.
|
||||
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**: A large language model specialized in generate metadata for stable diffusion. [[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
|
||||
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**: A multimodal large language model specialized in Chinese medical domain, based on LLaVA-1.5-7B.
|
||||
1. **[AutoRE](https://github.com/THUDM/AutoRE)**: A document-level relation extraction system based on large language models.
|
||||
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: SDKs for fine-tuning LLMs on Windows PC for NVIDIA RTX.
|
||||
|
||||
</details>
|
||||
|
||||
|
@ -556,10 +573,12 @@ Please follow the model licenses to use the corresponding model weights: [Baichu
|
|||
If this work is helpful, please kindly cite as:
|
||||
|
||||
```bibtex
|
||||
@article{zheng2024llamafactory,
|
||||
@inproceedings{zheng2024llamafactory,
|
||||
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
||||
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Yongqiang Ma},
|
||||
journal={arXiv preprint arXiv:2403.13372},
|
||||
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
|
||||
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
|
||||
address={Bangkok, Thailand},
|
||||
publisher={Association for Computational Linguistics},
|
||||
year={2024},
|
||||
url={http://arxiv.org/abs/2403.13372}
|
||||
}
|
||||
|
|
49
README_zh.md
49
README_zh.md
|
@ -15,7 +15,7 @@
|
|||
|
||||
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
|
||||
|
||||
👋 加入我们的[微信群](assets/wechat.jpg)。
|
||||
👋 加入我们的[微信群](assets/wechat.jpg)或 [NPU 用户群](assets/wechat_npu.jpg)。
|
||||
|
||||
\[ [English](README.md) | 中文 \]
|
||||
|
||||
|
@ -360,8 +360,6 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
|
|||
|
||||
<details><summary>昇腾 NPU 用户指南</summary>
|
||||
|
||||
加入 [NPU 用户群](assets/wechat_npu.jpg)。
|
||||
|
||||
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e '.[torch-npu,metrics]'` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
|
||||
|
||||
```bash
|
||||
|
@ -503,38 +501,55 @@ run_name: test_run # 可选
|
|||
1. Wang et al. UbiPhysio: Support Daily Functioning, Fitness, and Rehabilitation with Action Understanding and Feedback in Natural Language. 2023. [[arxiv]](https://arxiv.org/abs/2308.10526)
|
||||
1. Luceri et al. Leveraging Large Language Models to Detect Influence Campaigns in Social Media. 2023. [[arxiv]](https://arxiv.org/abs/2311.07816)
|
||||
1. Zhang et al. Alleviating Hallucinations of Large Language Models through Induced Hallucinations. 2023. [[arxiv]](https://arxiv.org/abs/2312.15710)
|
||||
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||
1. Wang et al. Know Your Needs Better: Towards Structured Understanding of Marketer Demands with Analogical Reasoning Augmented LLMs. KDD 2024. [[arxiv]](https://arxiv.org/abs/2401.04319)
|
||||
1. Wang et al. CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2401.07286)
|
||||
1. Choi et al. FACT-GPT: Fact-Checking Augmentation via Claim Matching with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2402.05904)
|
||||
1. Zhang et al. AutoMathText: Autonomous Data Selection with Language Models for Mathematical Texts. 2024. [[arxiv]](https://arxiv.org/abs/2402.07625)
|
||||
1. Lyu et al. KnowTuning: Knowledge-aware Fine-tuning for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11176)
|
||||
1. Yang et al. LaCo: Large Language Model Pruning via Layer Collaps. 2024. [[arxiv]](https://arxiv.org/abs/2402.11187)
|
||||
1. Bhardwaj et al. Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic. 2024. [[arxiv]](https://arxiv.org/abs/2402.11746)
|
||||
1. Yang et al. Enhancing Empathetic Response Generation by Augmenting LLMs with Small-scale Empathetic Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11801)
|
||||
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. 2024. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||
1. Yi et al. Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2402.11809)
|
||||
1. Cao et al. Head-wise Shareable Attention for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.11819)
|
||||
1. Zhang et al. Enhancing Multilingual Capabilities of Large Language Models through Self-Distillation from Resource-Rich Languages. 2024. [[arxiv]](https://arxiv.org/abs/2402.12204)
|
||||
1. Kim et al. Efficient and Effective Vocabulary Expansion Towards Multilingual Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.14714)
|
||||
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||
1. Yu et al. KIEval: A Knowledge-grounded Interactive Evaluation Framework for Large Language Models. ACL 2024. [[arxiv]](https://arxiv.org/abs/2402.15043)
|
||||
1. Huang et al. Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2403.02333)
|
||||
1. Duan et al. Negating Negatives: Alignment without Human Positive Samples via Distributional Dispreference Optimization. 2024. [[arxiv]](https://arxiv.org/abs/2403.03419)
|
||||
1. Xie and Schwertfeger. Empowering Robotics with Large Language Models: osmAG Map Comprehension with LLMs. 2024. [[arxiv]](https://arxiv.org/abs/2403.08228)
|
||||
1. Wu et al. Large Language Models are Parallel Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2403.09073)
|
||||
1. Zhang et al. EDT: Improving Large Language Models' Generation by Entropy-based Dynamic Temperature Sampling. 2024. [[arxiv]](https://arxiv.org/abs/2403.14541)
|
||||
1. Weller et al. FollowIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions. 2024. [[arxiv]](https://arxiv.org/abs/2403.15246)
|
||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||
1. Hongbin Na. CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering. COLING 2024. [[arxiv]](https://arxiv.org/abs/2403.16008)
|
||||
1. Zan et al. CodeS: Natural Language to Code Repository via Multi-Layer Sketch. 2024. [[arxiv]](https://arxiv.org/abs/2403.16443)
|
||||
1. Liu et al. Extensive Self-Contrast Enables Feedback-Free Language Model Alignment. 2024. [[arxiv]](https://arxiv.org/abs/2404.00604)
|
||||
1. Luo et al. BAdam: A Memory Efficient Full Parameter Training Method for Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.02827)
|
||||
1. Du et al. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2404.04167)
|
||||
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||
1. Ma et al. Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation. ICML 2024. [[arxiv]](https://arxiv.org/abs/2404.04316)
|
||||
1. Liu et al. Dynamic Generation of Personalities with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.07084)
|
||||
1. Shang et al. How Far Have We Gone in Stripped Binary Code Understanding Using Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.09836)
|
||||
1. Huang et al. LLMTune: Accelerate Database Knob Tuning with Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2404.11581)
|
||||
1. Deng et al. Text-Tuple-Table: Towards Information Integration in Text-to-Table Generation via Global Tuple Extraction. 2024. [[arxiv]](https://arxiv.org/abs/2404.14215)
|
||||
1. Acikgoz et al. Hippocrates: An Open-Source Framework for Advancing Large Language Models in Healthcare. 2024. [[arxiv]](https://arxiv.org/abs/2404.16621)
|
||||
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. 2024. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||
1. Zhang et al. Small Language Models Need Strong Verifiers to Self-Correct Reasoning. ACL 2024 Findings. [[arxiv]](https://arxiv.org/abs/2404.17140)
|
||||
1. Zhou et al. FREB-TQA: A Fine-Grained Robustness Evaluation Benchmark for Table Question Answering. NAACL 2024. [[arxiv]](https://arxiv.org/abs/2404.18585)
|
||||
1. Xu et al. Large Language Models for Cyber Security: A Systematic Literature Review. 2024. [[arxiv]](https://arxiv.org/abs/2405.04760)
|
||||
1. Dammu et al. "They are uncultured": Unveiling Covert Harms and Social Threats in LLM Generated Conversations. 2024. [[arxiv]](https://arxiv.org/abs/2405.05378)
|
||||
1. Yi et al. A safety realignment framework via subspace-oriented model fusion for large language models. 2024. [[arxiv]](https://arxiv.org/abs/2405.09055)
|
||||
1. Lou et al. SPO: Multi-Dimensional Preference Sequential Alignment With Implicit Reward Modeling. 2024. [[arxiv]](https://arxiv.org/abs/2405.12739)
|
||||
1. Zhang et al. Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners. 2024. [[arxiv]](https://arxiv.org/abs/2405.13816)
|
||||
1. Zhang et al. TS-Align: A Teacher-Student Collaborative Framework for Scalable Iterative Finetuning of Large Language Models. 2024. [[arxiv]](https://arxiv.org/abs/2405.20215)
|
||||
1. Zihong Chen. Sentence Segmentation and Sentence Punctuation Based on XunziALLM. 2024. [[paper]](https://aclanthology.org/2024.lt4hala-1.30)
|
||||
1. Gao et al. The Best of Both Worlds: Toward an Honest and Helpful Large Language Model. 2024. [[arxiv]](https://arxiv.org/abs/2406.00380)
|
||||
1. Wang and Song. MARS: Benchmarking the Metaphysical Reasoning Abilities of Language Models with a Multi-task Evaluation Dataset. 2024. [[arxiv]](https://arxiv.org/abs/2406.02106)
|
||||
1. Hu et al. Computational Limits of Low-Rank Adaptation (LoRA) for Transformer-Based Models. 2024. [[arxiv]](https://arxiv.org/abs/2406.03136)
|
||||
1. Ge et al. Time Sensitive Knowledge Editing through Efficient Finetuning. ACL 2024. [[arxiv]](https://arxiv.org/abs/2406.04496)
|
||||
1. Tan et al. Peer Review as A Multi-Turn and Long-Context Dialogue with Role-Based Interactions. 2024. [[arxiv]](https://arxiv.org/abs/2406.05688)
|
||||
1. Song et al. Turbo Sparse: Achieving LLM SOTA Performance with Minimal Activated Parameters. 2024. [[arxiv]](https://arxiv.org/abs/2406.05955)
|
||||
1. Gu et al. RWKV-CLIP: A Robust Vision-Language Representation Learner. 2024. [[arxiv]](https://arxiv.org/abs/2406.06973)
|
||||
1. Chen et al. Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees. 2024. [[arxiv]](https://arxiv.org/abs/2406.07115)
|
||||
1. Zhu et al. Are Large Language Models Good Statisticians?. 2024. [[arxiv]](https://arxiv.org/abs/2406.07815)
|
||||
1. Li et al. Know the Unknown: An Uncertainty-Sensitive Method for LLM Instruction Tuning. 2024. [[arxiv]](https://arxiv.org/abs/2406.10099)
|
||||
1. **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper,基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
|
||||
1. **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM,基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
|
||||
1. **[Sunsimiao](https://github.com/X-D-Lab/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao,基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
|
||||
|
@ -542,6 +557,8 @@ run_name: test_run # 可选
|
|||
1. **[MachineMindset](https://github.com/PKU-YuanGroup/Machine-Mindset/)**:MBTI性格大模型项目,根据数据集与训练方式让任意 LLM 拥有 16 个不同的性格类型。
|
||||
1. **[Luminia-13B-v3](https://huggingface.co/Nekochu/Luminia-13B-v3)**:一个用于生成 Stable Diffusion 提示词的大型语言模型。[[🤗Demo]](https://huggingface.co/spaces/Nekochu/Luminia-13B_SD_Prompt)
|
||||
1. **[Chinese-LLaVA-Med](https://github.com/BUAADreamer/Chinese-LLaVA-Med)**:中文多模态医学大模型,基于 LLaVA-1.5-7B 在中文多模态医疗数据上微调而得。
|
||||
1. **[AutoRE](https://github.com/THUDM/AutoRE)**:基于大语言模型的文档级关系抽取系统。
|
||||
1. **[NVIDIA RTX AI Toolkit](https://github.com/NVIDIA/RTX-AI-Toolkit)**: 在 Windows 主机上利用英伟达 RTX 设备进行大型语言模型微调的开发包。
|
||||
|
||||
</details>
|
||||
|
||||
|
@ -556,10 +573,12 @@ run_name: test_run # 可选
|
|||
如果您觉得此项目有帮助,请考虑以下列格式引用
|
||||
|
||||
```bibtex
|
||||
@article{zheng2024llamafactory,
|
||||
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
||||
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Yongqiang Ma},
|
||||
journal={arXiv preprint arXiv:2403.13372},
|
||||
@inproceedings{zheng2024llamafactory,
|
||||
title={LlamaFactory: Unified Efficient Fine-Tuning of 100+ Language Models},
|
||||
author={Yaowei Zheng and Richong Zhang and Junhao Zhang and Yanhan Ye and Zheyan Luo and Zhangchi Feng and Yongqiang Ma},
|
||||
booktitle={Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
|
||||
address={Bangkok, Thailand},
|
||||
publisher={Association for Computational Linguistics},
|
||||
year={2024},
|
||||
url={http://arxiv.org/abs/2403.13372}
|
||||
}
|
||||
|
|
|
@ -579,7 +579,7 @@ register_model_group(
|
|||
|
||||
register_model_group(
|
||||
models={
|
||||
"Jambda-v0.1": {
|
||||
"Jamba-v0.1": {
|
||||
DownloadSource.DEFAULT: "ai21labs/Jamba-v0.1",
|
||||
DownloadSource.MODELSCOPE: "AI-ModelScope/Jamba-v0.1",
|
||||
}
|
||||
|
|
|
@ -202,18 +202,18 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
|
||||
if self.is_world_process_zero():
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = {}".format(num_examples))
|
||||
logger.info(" Num Epochs = {}".format(num_train_epochs))
|
||||
logger.info(" Instantaneous batch size per device = {}".format(self.args.per_device_train_batch_size))
|
||||
logger.info(" Num examples = {:,}".format(num_examples))
|
||||
logger.info(" Num Epochs = {:,}".format(num_train_epochs))
|
||||
logger.info(" Instantaneous batch size per device = {:,}".format(self.args.per_device_train_batch_size))
|
||||
logger.info(
|
||||
" Total train batch size (w. parallel, buffer, distributed & accumulation) = {}".format(
|
||||
" Total train batch size (w. parallel, buffer, distributed & accumulation) = {:,}".format(
|
||||
total_train_batch_size
|
||||
)
|
||||
)
|
||||
logger.info(" Gradient Accumulation steps = {}".format(self.args.gradient_accumulation_steps))
|
||||
logger.info(" Num optimization epochs per batch = {}".format(self.finetuning_args.ppo_epochs))
|
||||
logger.info(" Total training steps = {}".format(max_steps))
|
||||
logger.info(" Number of trainable parameters = {}".format(count_parameters(self.model)[0]))
|
||||
logger.info(" Gradient Accumulation steps = {:,}".format(self.args.gradient_accumulation_steps))
|
||||
logger.info(" Num optimization epochs per batch = {:,}".format(self.finetuning_args.ppo_epochs))
|
||||
logger.info(" Total training steps = {:,}".format(max_steps))
|
||||
logger.info(" Number of trainable parameters = {:,}".format(count_parameters(self.model)[0]))
|
||||
|
||||
dataiter = iter(self.dataloader)
|
||||
loss_meter = AverageMeter()
|
||||
|
|
Loading…
Reference in New Issue