Merge branch 'main' of https://github.com/hiyouga/LLaMA-Efficient-Tuning
This commit is contained in:
commit
e510006ed6
|
@ -13,7 +13,7 @@ from transformers import (
|
||||||
PreTrainedModel,
|
PreTrainedModel,
|
||||||
PreTrainedTokenizerBase
|
PreTrainedTokenizerBase
|
||||||
)
|
)
|
||||||
from transformers.utils import check_min_version
|
from transformers.utils import check_min_version, is_torch_npu_available
|
||||||
from transformers.utils.versions import require_version
|
from transformers.utils.versions import require_version
|
||||||
from trl import AutoModelForCausalLMWithValueHead
|
from trl import AutoModelForCausalLMWithValueHead
|
||||||
|
|
||||||
|
@ -215,7 +215,10 @@ def load_model_and_tokenizer(
|
||||||
# Prepare model for inference
|
# Prepare model for inference
|
||||||
if not is_trainable:
|
if not is_trainable:
|
||||||
model.requires_grad_(False) # fix all model params
|
model.requires_grad_(False) # fix all model params
|
||||||
infer_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 # detect cuda capability
|
if is_torch_npu_available():
|
||||||
|
infer_dtype = torch.float16
|
||||||
|
else:
|
||||||
|
infer_dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 # detect cuda capability
|
||||||
model = model.to(infer_dtype) if model_args.quantization_bit is None else model
|
model = model.to(infer_dtype) if model_args.quantization_bit is None else model
|
||||||
|
|
||||||
trainable_params, all_param = count_parameters(model)
|
trainable_params, all_param = count_parameters(model)
|
||||||
|
|
Loading…
Reference in New Issue