Merge remote-tracking branch 'upstream/main'

This commit is contained in:
Jonery 2024-06-17 18:44:51 +08:00
commit ea1f3ba5e0
184 changed files with 5411 additions and 1780 deletions

View File

@ -4,6 +4,8 @@
.venv
cache
data
hf_cache
output
examples
.dockerignore
.gitattributes

View File

@ -13,6 +13,18 @@ body:
- label: I have read the README and searched the existing issues.
required: true
- type: textarea
id: system-info
validations:
required: true
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **llamafactory-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **llamafactory-cli env** 并将其输出复制到该文本框中。
placeholder: llamafactory version, platform, python version, ...
- type: textarea
id: reproduction
validations:
@ -26,7 +38,9 @@ body:
请合理使用 Markdown 标签来格式化您的文本。
placeholder: |
python src/train_bash.py ...
```bash
llamafactory-cli train ...
```
- type: textarea
id: expected-behavior
@ -38,18 +52,6 @@ body:
Please provide a clear and concise description of what you would expect to happen.
请提供您原本的目的,即这段代码的期望行为。
- type: textarea
id: system-info
validations:
required: false
attributes:
label: System Info
description: |
Please share your system info with us. You can run the command **transformers-cli env** and copy-paste its output below.
请提供您的系统信息。您可以在命令行运行 **transformers-cli env** 并将其输出复制到该文本框中。
placeholder: transformers version, platform, python version, ...
- type: textarea
id: others
validations:

View File

@ -5,3 +5,4 @@ Fixes # (issue)
## Before submitting
- [ ] Did you read the [contributor guideline](https://github.com/hiyouga/LLaMA-Factory/blob/main/.github/CONTRIBUTING.md)?
- [ ] Did you write any new necessary tests?

17
.github/workflows/label_issue.yml vendored Normal file
View File

@ -0,0 +1,17 @@
name: label_issue
on:
issues:
types:
- opened
jobs:
label_issue:
runs-on: ubuntu-latest
steps:
- env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
ISSUE_URL: ${{ github.event.issue.html_url }}
run: |
gh issue edit $ISSUE_URL --add-label "pending"

View File

@ -2,28 +2,44 @@ name: tests
on:
push:
branches: [ "main" ]
branches:
- main
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
pull_request:
branches: [ "main" ]
branches:
- main
paths:
- "**.py"
- "requirements.txt"
- ".github/workflows/*.yml"
jobs:
check_code_quality:
tests:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Checkout
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.8"
cache: "pip"
cache-dependency-path: "setup.py"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ruff
python -m pip install .[torch,dev]
- name: Check quality
run: |
make style && make quality
make style && make quality
- name: Test with pytest
run: |
make test

View File

@ -1,14 +1,44 @@
FROM nvcr.io/nvidia/pytorch:24.01-py3
# Use the NVIDIA official image with PyTorch 2.3.0
# https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/rel-24-02.html
FROM nvcr.io/nvidia/pytorch:24.02-py3
# Define installation arguments
ARG INSTALL_BNB=false
ARG INSTALL_VLLM=false
ARG INSTALL_DEEPSPEED=false
ARG PIP_INDEX=https://pypi.org/simple
# Set the working directory
WORKDIR /app
# Install the requirements
COPY requirements.txt /app/
RUN pip install -r requirements.txt
RUN pip config set global.index-url $PIP_INDEX
RUN python -m pip install --upgrade pip
RUN python -m pip install -r requirements.txt
# Copy the rest of the application into the image
COPY . /app/
RUN pip install -e .[metrics,bitsandbytes,qwen]
# Install the LLaMA Factory
RUN EXTRA_PACKAGES="metrics"; \
if [ "$INSTALL_BNB" = "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},bitsandbytes"; \
fi; \
if [ "$INSTALL_VLLM" = "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},vllm"; \
fi; \
if [ "$INSTALL_DEEPSPEED" = "true" ]; then \
EXTRA_PACKAGES="${EXTRA_PACKAGES},deepspeed"; \
fi; \
pip install -e .[$EXTRA_PACKAGES] && \
pip uninstall -y transformer-engine flash-attn
# Set up volumes
VOLUME [ "/root/.cache/huggingface/", "/app/data", "/app/output" ]
# Expose port 7860 for the LLaMA Board
EXPOSE 7860
CMD [ "llamafactory-cli", "webui" ]
# Expose port 8000 for the API service
EXPOSE 8000

1
MANIFEST.in Normal file
View File

@ -0,0 +1 @@
include LICENSE requirements.txt

View File

@ -1,4 +1,4 @@
.PHONY: quality style
.PHONY: quality style test
check_dirs := scripts src tests
@ -9,3 +9,6 @@ quality:
style:
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
test:
CUDA_VISIBLE_DEVICES= pytest tests/

184
README.md
View File

@ -8,9 +8,10 @@
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
@ -25,6 +26,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/9840a653-7e9c-41c8-ae89
Choose your path:
- **Colab**: https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **Local machine**: Please refer to [usage](#getting-started)
## Table of Contents
@ -45,9 +47,9 @@ Choose your path:
## Features
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO and ORPO.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 32-bit full-tuning, 16-bit freeze-tuning, 16-bit LoRA and 2/4/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and Agent tuning.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
@ -69,14 +71,18 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
<details><summary>Full Changelog</summary>
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
[24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
<details><summary>Full Changelog</summary>
[24/05/14] We supported training and inference on the Ascend NPU devices. Check [installation](#installation) section for details.
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See [examples](examples/README.md) for usage.
@ -145,38 +151,38 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Supported Models
| Model | Model size | Default module | Template |
| -------------------------------------------------------- | -------------------------------- | ----------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | q_proj,v_proj | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | query_key_value | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | q_proj,v_proj | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | q_proj,v_proj | - |
| [PaliGemma](https://huggingface.co/google) | 3B | q_proj,v_proj | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | qkv_proj | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
| Model | Model size | Template |
| -------------------------------------------------------- | -------------------------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | gemma |
| [GLM4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2 (MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/7B/57B/72B | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules for better convergence.
>
> For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
> For the "base" models, the `template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the **corresponding template** for the "instruct/chat" models.
>
> Remember to use the **SAME** template in training and inference.
@ -208,6 +214,8 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@ -251,6 +259,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
@ -267,6 +276,7 @@ You also can add a custom chat template to [template.py](src/llamafactory/data/t
<details><summary>Preference datasets</summary>
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
@ -286,21 +296,21 @@ huggingface-cli login
| Mandatory | Minimum | Recommend |
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.41.0 |
| datasets | 2.14.3 | 2.19.1 |
| accelerate | 0.27.2 | 0.30.1 |
| peft | 0.9.0 | 0.11.1 |
| trl | 0.8.2 | 0.8.6 |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.3.0 |
| transformers | 4.41.2 | 4.41.2 |
| datasets | 2.16.0 | 2.19.2 |
| accelerate | 0.30.1 | 0.30.1 |
| peft | 0.11.1 | 0.11.1 |
| trl | 0.8.6 | 0.9.4 |
| Optional | Minimum | Recommend |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.0 | 0.4.2 |
| flash-attn | 2.3.0 | 2.5.8 |
| vllm | 0.4.3 | 0.4.3 |
| flash-attn | 2.3.0 | 2.5.9 |
### Hardware Requirement
@ -326,10 +336,10 @@ huggingface-cli login
```bash
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e .[torch,metrics]
pip install -e ".[torch,metrics]"
```
Extra dependencies available: torch, metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
Extra dependencies available: torch, torch_npu, metrics, deepspeed, bitsandbytes, vllm, galore, badam, gptq, awq, aqlm, qwen, modelscope, quality
> [!TIP]
> Use `pip install --no-deps -e .` to resolve package conflicts.
@ -350,14 +360,28 @@ To enable FlashAttention-2 on the Windows platform, you need to install the prec
Join [NPU user group](assets/wechat_npu.jpg).
To utilize Ascend NPU devices for (distributed) training and inference, you need to install the **[torch-npu](https://gitee.com/ascend/pytorch)** library and the **[Ascend CANN Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**.
To install LLaMA Factory on Ascend NPU devices, please specify extra dependencies: `pip install -e '.[torch-npu,metrics]'`. Additionally, you need to install the **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**. Please follow the [installation tutorial](https://www.hiascend.com/document/detail/en/CANNCommunityEdition/600alphaX/softwareinstall/instg/atlasdeploy_03_0031.html) or use the following commands:
| Requirement | Minimum | Recommend |
| ------------ | ------- | --------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.2.0 | 2.2.0 |
| torch-npu | 2.2.0 | 2.2.0 |
| deepspeed | 0.13.2 | 0.13.2 |
```bash
# replace the url according to your CANN version and devices
# install CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
# install CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
# set env variables
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| Requirement | Minimum | Recommend |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
Docker image:
@ -382,9 +406,9 @@ Please refer to [data/README.md](data/README.md) for checking the details about
Use the following 3 commands to run LoRA **fine-tuning**, **inference** and **merging** of the Llama3-8B-Instruct model, respectively.
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
See [examples/README.md](examples/README.md) for advanced usage (including distributed training).
@ -394,36 +418,38 @@ See [examples/README.md](examples/README.md) for advanced usage (including distr
### Fine-Tuning with LLaMA Board GUI (powered by [Gradio](https://github.com/gradio-app/gradio))
> [!IMPORTANT]
> LLaMA Board GUI only supports training on a single GPU.
#### Use local environment
```bash
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
llamafactory-cli webui
```
</details>
### Build Docker
#### Use Docker
```bash
docker build -f ./Dockerfile -t llama-factory:latest .
docker run --gpus=all \
docker build -f ./Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
-t llamafactory:latest .
docker run -it --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
-v ./output:/app/output \
-e CUDA_VISIBLE_DEVICES=0 \
-p 7860:7860 \
-p 8000:8000 \
--shm-size 16G \
--name llama_factory \
-d llama-factory:latest
--name llamafactory \
llamafactory:latest
```
#### Use Docker Compose
```bash
docker compose -f ./docker-compose.yml up -d
docker-compose up -d
docker-compose exec llamafactory bash
```
<details><summary>Details about volume</summary>
@ -437,9 +463,12 @@ docker compose -f ./docker-compose.yml up -d
### Deploy with OpenAI-style API and vLLM
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
> [!TIP]
> Visit https://platform.openai.com/docs/api-reference/chat/create for API document.
### Download from ModelScope Hub
If you have trouble with downloading models and datasets from Hugging Face, you can use ModelScope.
@ -448,7 +477,18 @@ If you have trouble with downloading models and datasets from Hugging Face, you
export USE_MODELSCOPE_HUB=1 # `set USE_MODELSCOPE_HUB=1` for Windows
```
Train the model by specifying a model ID of the ModelScope Hub as the `--model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
Train the model by specifying a model ID of the ModelScope Hub as the `model_name_or_path`. You can find a full list of model IDs at [ModelScope Hub](https://modelscope.cn/models), e.g., `LLM-Research/Meta-Llama-3-8B-Instruct`.
### Use W&B Logger
To use [Weights & Biases](https://wandb.ai) for logging experimental results, you need to add the following arguments.
```yaml
report_to: wandb
run_name: test_run # optional
```
Set `WANDB_API_KEY` to [your key](https://wandb.ai/authorize) when launching training tasks to log in with your W&B account.
## Projects using LLaMA Factory
@ -507,7 +547,7 @@ If you have a project that should be incorporated, please contact via email or c
This repository is licensed under the [Apache-2.0 License](LICENSE).
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## Citation

View File

@ -8,9 +8,10 @@
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
[![Discord](https://dcbadge.vercel.app/api/server/rKfvV9r9FK?compact=true&style=flat)](https://discord.gg/rKfvV9r9FK)
[![Twitter](https://img.shields.io/twitter/follow/llamafactory_ai)](https://twitter.com/llamafactory_ai)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![Open in DSW](https://gallery.pai-ml.com/assets/open-in-dsw.svg)](https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory)
[![Spaces](https://img.shields.io/badge/🤗-Open%20in%20Spaces-blue)](https://huggingface.co/spaces/hiyouga/LLaMA-Board)
[![Studios](https://img.shields.io/badge/ModelScope-Open%20in%20Studios-blue)](https://modelscope.cn/studios/hiyouga/LLaMA-Board)
[![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)
[![GitHub Tread](https://trendshift.io/api/badge/repositories/4535)](https://trendshift.io/repositories/4535)
@ -25,6 +26,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
选择你的打开方式:
- **Colab**https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing
- **PAI-DSW**: https://gallery.pai-ml.com/#/preview/deepLearning/nlp/llama_factory
- **本地机器**:请见[如何使用](#如何使用)
## 目录
@ -45,9 +47,9 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 项目特色
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练和 ORPO 训练
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等
- **多种精度**32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
- **实用技巧**FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
@ -69,14 +71,18 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 更新日志
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
[24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** 和 **[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调。
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
<details><summary>展开日志</summary>
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力。
[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
<details><summary>展开日志</summary>
[24/05/14] 我们支持了昇腾 NPU 设备的训练和推理。详情请查阅[安装](#安装-llama-factory)部分。
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 [examples](examples/README_zh.md)。
@ -145,40 +151,40 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 模型
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | -------------------------------- | ----------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | query_key_value | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | q_proj,v_proj | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | q_proj,v_proj | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | query_key_value | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | q_proj,v_proj | gemma |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | wqkv | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | q_proj,v_proj | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | q_proj,v_proj | - |
| [PaliGemma](https://huggingface.co/google) | 3B | q_proj,v_proj | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | qkv_proj | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | c_attn | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | q_proj,v_proj | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | q_proj,v_proj | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | q_proj,v_proj | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | q_proj,v_proj | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | q_proj,v_proj | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | q_proj,v_proj | yuan |
| 模型名 | 模型大小 | Template |
| -------------------------------------------------------- | -------------------------------- | --------- |
| [Baichuan2](https://huggingface.co/baichuan-inc) | 7B/13B | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [BLOOMZ](https://huggingface.co/bigscience) | 560M/1.1B/1.7B/3B/7.1B/176B | - |
| [ChatGLM3](https://huggingface.co/THUDM) | 6B | chatglm3 |
| [Command-R](https://huggingface.co/CohereForAI) | 35B/104B | cohere |
| [DeepSeek (MoE)](https://huggingface.co/deepseek-ai) | 7B/16B/67B/236B | deepseek |
| [Falcon](https://huggingface.co/tiiuae) | 7B/11B/40B/180B | falcon |
| [Gemma/CodeGemma](https://huggingface.co/google) | 2B/7B | gemma |
| [GLM4](https://huggingface.co/THUDM) | 9B | glm4 |
| [InternLM2](https://huggingface.co/internlm) | 7B/20B | intern2 |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | llama2 |
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | llama3 |
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | vicuna |
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | mistral |
| [OLMo](https://huggingface.co/allenai) | 1B/7B | - |
| [PaliGemma](https://huggingface.co/google) | 3B | gemma |
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | - |
| [Phi-3](https://huggingface.co/microsoft) | 4B/7B/14B | phi |
| [Qwen](https://huggingface.co/Qwen) | 1.8B/7B/14B/72B | qwen |
| [Qwen1.5 (Code/MoE)](https://huggingface.co/Qwen) | 0.5B/1.8B/4B/7B/14B/32B/72B/110B | qwen |
| [Qwen2 (MoE)](https://huggingface.co/Qwen) | 0.5B/1.5B/7B/57B/72B | qwen |
| [StarCoder2](https://huggingface.co/bigcode) | 3B/7B/15B | - |
| [XVERSE](https://huggingface.co/xverse) | 7B/13B/65B | xverse |
| [Yi (1/1.5)](https://huggingface.co/01-ai) | 6B/9B/34B | yi |
| [Yi-VL](https://huggingface.co/01-ai) | 6B/34B | yi_vl |
| [Yuan](https://huggingface.co/IEITYuan) | 2B/51B/102B | yuan |
> [!NOTE]
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块以取得更好的效果
> 对于所有“基座”Base模型`template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Instruct/Chat模型请务必使用**对应的模板**
>
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Instruct/Chat模型请务必使用**对应的模板**。
>
> 请务必在训练和推理时使用**完全一致**的模板。
> 请务必在训练和推理时采用**完全一致**的模板。
项目所支持模型的完整列表请参阅 [constants.py](src/llamafactory/extras/constants.py)。
@ -208,6 +214,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [FineWeb (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb)
- [FineWeb-Edu (en)](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
@ -251,6 +259,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- [Cosmopedia (en)](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [STEM (zh)](https://huggingface.co/datasets/hfl/stem_zh_instruction)
- [Ruozhiba (zh)](https://huggingface.co/datasets/hfl/ruozhiba_gpt4_turbo)
- [Neo-sft (zh)](https://huggingface.co/datasets/m-a-p/neo_sft_phase2)
- [LLaVA mixed (en&zh)](https://huggingface.co/datasets/BUAADreamer/llava-en-zh-300k)
- [Open Assistant (de)](https://huggingface.co/datasets/mayflowergmbh/oasst_de)
- [Dolly 15k (de)](https://huggingface.co/datasets/mayflowergmbh/dolly-15k_de)
@ -267,6 +276,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
<details><summary>偏好数据集</summary>
- [DPO mixed (en&zh)](https://huggingface.co/datasets/hiyouga/DPO-En-Zh-20k)
- [UltraFeedback (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized)
- [Orca DPO Pairs (en)](https://huggingface.co/datasets/Intel/orca_dpo_pairs)
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Nectar (en)](https://huggingface.co/datasets/berkeley-nest/Nectar)
@ -286,21 +296,21 @@ huggingface-cli login
| 必需项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| python | 3.8 | 3.10 |
| torch | 1.13.1 | 2.2.0 |
| transformers | 4.37.2 | 4.41.0 |
| datasets | 2.14.3 | 2.19.1 |
| accelerate | 0.27.2 | 0.30.1 |
| peft | 0.9.0 | 0.11.1 |
| trl | 0.8.2 | 0.8.6 |
| python | 3.8 | 3.11 |
| torch | 1.13.1 | 2.3.0 |
| transformers | 4.41.2 | 4.41.2 |
| datasets | 2.16.0 | 2.19.2 |
| accelerate | 0.30.1 | 0.30.1 |
| peft | 0.11.1 | 0.11.1 |
| trl | 0.8.6 | 0.9.4 |
| 可选项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CUDA | 11.6 | 12.2 |
| deepspeed | 0.10.0 | 0.14.0 |
| bitsandbytes | 0.39.0 | 0.43.1 |
| vllm | 0.4.0 | 0.4.2 |
| flash-attn | 2.3.0 | 2.5.8 |
| vllm | 0.4.3 | 0.4.3 |
| flash-attn | 2.3.0 | 2.5.9 |
### 硬件依赖
@ -326,10 +336,10 @@ huggingface-cli login
```bash
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e .[torch,metrics]
pip install -e ".[torch,metrics]"
```
可选的额外依赖项torch、metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
可选的额外依赖项torch、torch_npu、metrics、deepspeed、bitsandbytes、vllm、galore、badam、gptq、awq、aqlm、qwen、modelscope、quality
> [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。
@ -350,21 +360,35 @@ pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/downl
加入 [NPU 用户群](assets/wechat_npu.jpg)。
如果使用昇腾 NPU 设备进行(分布式)训练或推理,需要安装 **[torch-npu](https://gitee.com/ascend/pytorch)** 库和 **[Ascend CANN Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**。
在昇腾 NPU 设备上安装 LLaMA Factory 时,需要指定额外依赖项,使用 `pip install -e '.[torch-npu,metrics]'` 命令安装。此外,还需要安装 **[Ascend CANN Toolkit and Kernels](https://www.hiascend.com/developer/download/community/result?module=cann)**,安装方法请参考[安装教程](https://www.hiascend.com/document/detail/zh/CANNCommunityEdition/80RC2alpha002/quickstart/quickstart/quickstart_18_0004.html)或使用以下命令:
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | --------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.2.0 | 2.2.0 |
| torch-npu | 2.2.0 | 2.2.0 |
| deepspeed | 0.13.2 | 0.13.2 |
```bash
# 请替换 URL 为 CANN 版本和设备型号对应的 URL
# 安装 CANN Toolkit
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run
bash Ascend-cann-toolkit_8.0.RC1.alpha001_linux-"$(uname -i)".run --install
# 安装 CANN Kernels
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C17SPC701/Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run
bash Ascend-cann-kernels-910b_8.0.RC1.alpha001_linux.run --install
# 设置环境变量
source /usr/local/Ascend/ascend-toolkit/set_env.sh
```
| 依赖项 | 至少 | 推荐 |
| ------------ | ------- | ----------- |
| CANN | 8.0.RC1 | 8.0.RC1 |
| torch | 2.1.0 | 2.1.0 |
| torch-npu | 2.1.0 | 2.1.0.post3 |
| deepspeed | 0.13.2 | 0.13.2 |
Docker 镜像:
- 32GB[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/130.html)
- 64GB[下载地址](http://mirrors.cn-central-221.ovaijisuan.com/detail/131.html)
请记得使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定您使用的设备。
请使用 `ASCEND_RT_VISIBLE_DEVICES` 而非 `CUDA_VISIBLE_DEVICES` 来指定运算设备。
如果遇到无法正常推理的情况,请尝试设置 `do_sample: false`
@ -382,9 +406,9 @@ Docker 镜像:
下面三行命令分别对 Llama3-8B-Instruct 模型进行 LoRA **微调**、**推理**和**合并**。
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
高级用法请参考 [examples/README_zh.md](examples/README_zh.md)(包括多 GPU 微调)。
@ -394,34 +418,38 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_s
### LLaMA Board 可视化微调(由 [Gradio](https://github.com/gradio-app/gradio) 驱动)
> [!IMPORTANT]
> LLaMA Board 可视化界面目前仅支持单 GPU 训练。
#### 使用本地环境
```bash
CUDA_VISIBLE_DEVICES=0 GRADIO_SHARE=1 llamafactory-cli webui
llamafactory-cli webui
```
### 构建 Docker
#### 使用 Docker
```bash
docker build -f ./Dockerfile -t llama-factory:latest .
docker run --gpus=all \
docker build -f ./Dockerfile \
--build-arg INSTALL_BNB=false \
--build-arg INSTALL_VLLM=false \
--build-arg INSTALL_DEEPSPEED=false \
--build-arg PIP_INDEX=https://pypi.org/simple \
-t llamafactory:latest .
docker run -it --gpus=all \
-v ./hf_cache:/root/.cache/huggingface/ \
-v ./data:/app/data \
-v ./output:/app/output \
-e CUDA_VISIBLE_DEVICES=0 \
-p 7860:7860 \
-p 8000:8000 \
--shm-size 16G \
--name llama_factory \
-d llama-factory:latest
--name llamafactory \
llamafactory:latest
```
#### 使用 Docker Compose
```bash
docker compose -f ./docker-compose.yml up -d
docker-compose up -d
docker-compose exec llamafactory bash
```
<details><summary>数据卷详情</summary>
@ -435,9 +463,12 @@ docker compose -f ./docker-compose.yml up -d
### 利用 vLLM 部署 OpenAI API
```bash
CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
```
> [!TIP]
> API 文档请查阅 https://platform.openai.com/docs/api-reference/chat/create。
### 从魔搭社区下载
如果您在 Hugging Face 模型和数据集的下载中遇到了问题,可以通过下述方法使用魔搭社区。
@ -446,7 +477,18 @@ CUDA_VISIBLE_DEVICES=0,1 API_PORT=8000 llamafactory-cli api examples/inference/l
export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
```
`--model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`
`model_name_or_path` 设置为模型 ID 来加载对应的模型。在[魔搭社区](https://modelscope.cn/models)查看所有可用的模型,例如 `LLM-Research/Meta-Llama-3-8B-Instruct`
### 使用 W&B 面板
若要使用 [Weights & Biases](https://wandb.ai) 记录实验数据,请添加下面的参数。
```yaml
report_to: wandb
run_name: test_run # 可选
```
在启动训练任务时,将 `WANDB_API_KEY` 设置为[密钥](https://wandb.ai/authorize)来登录 W&B 账户。
## 使用了 LLaMA Factory 的项目
@ -505,7 +547,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [GLM4](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2 (LLaVA-1.5)](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yi-1.5](LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
## 引用

Binary file not shown.

Before

Width:  |  Height:  |  Size: 192 KiB

After

Width:  |  Height:  |  Size: 140 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 146 KiB

After

Width:  |  Height:  |  Size: 148 KiB

View File

@ -12,6 +12,7 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
"ranking": "whether the dataset is a preference dataset or not. (default: False)",
"subset": "the name of the subset. (optional, default: None)",
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
"num_samples": "the number of samples in the dataset used for training. (optional, default: None)",
"columns (optional)": {
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",

View File

@ -12,6 +12,7 @@
"ranking": "是否为偏好数据集可选默认False",
"subset": "数据集子集的名称可选默认None",
"folder": "Hugging Face 仓库的文件夹名称可选默认None",
"num_samples": "该数据集中用于训练的样本数量。可选默认None",
"columns可选": {
"prompt": "数据集代表提示词的表头名称默认instruction",
"query": "数据集代表请求的表头名称默认input",

View File

@ -248,6 +248,10 @@
"ruozhiba_gpt4": {
"hf_hub_url": "hfl/ruozhiba_gpt4_turbo"
},
"neo_sft": {
"hf_hub_url": "m-a-p/neo_sft_phase2",
"formatting": "sharegpt"
},
"llava_1k_en": {
"hf_hub_url": "BUAADreamer/llava-en-zh-2k",
"subset": "en",
@ -308,6 +312,20 @@
"assistant_tag": "assistant"
}
},
"mllm_pt_demo": {
"hf_hub_url": "BUAADreamer/mllm_pt_demo",
"formatting": "sharegpt",
"columns": {
"messages": "messages",
"images": "images"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
},
"oasst_de": {
"hf_hub_url": "mayflowergmbh/oasst_de"
},
@ -377,6 +395,16 @@
"rejected": "rejected"
}
},
"ultrafeedback": {
"hf_hub_url": "llamafactory/ultrafeedback_binarized",
"ms_hub_url": "llamafactory/ultrafeedback_binarized",
"ranking": true,
"columns": {
"prompt": "instruction",
"chosen": "chosen",
"rejected": "rejected"
}
},
"orca_pairs": {
"hf_hub_url": "Intel/orca_dpo_pairs",
"ranking": true,
@ -434,6 +462,15 @@
"assistant_tag": "assistant"
}
},
"ultrafeedback_kto": {
"hf_hub_url": "argilla/ultrafeedback-binarized-preferences-cleaned-kto",
"ms_hub_url": "AI-ModelScope/ultrafeedback-binarized-preferences-cleaned-kto",
"columns": {
"prompt": "prompt",
"response": "completion",
"kto_tag": "label"
}
},
"wiki_demo": {
"file_name": "wiki_demo.txt",
"columns": {
@ -487,6 +524,18 @@
"prompt": "text"
}
},
"fileweb": {
"hf_hub_url": "HuggingFaceFW/fineweb",
"columns": {
"prompt": "text"
}
},
"fileweb_edu": {
"hf_hub_url": "HuggingFaceFW/fineweb-edu",
"columns": {
"prompt": "text"
}
},
"the_stack": {
"hf_hub_url": "bigcode/the-stack",
"ms_hub_url": "AI-ModelScope/the-stack",

View File

@ -1,20 +1,25 @@
version: '3.8'
services:
llama-factory:
llamafactory:
build:
dockerfile: Dockerfile
context: .
container_name: llama_factory
args:
INSTALL_BNB: false
INSTALL_VLLM: false
INSTALL_DEEPSPEED: false
PIP_INDEX: https://pypi.org/simple
container_name: llamafactory
volumes:
- ./hf_cache:/root/.cache/huggingface/
- ./data:/app/data
- ./output:/app/output
environment:
- CUDA_VISIBLE_DEVICES=0
ports:
- "7860:7860"
- "8000:8000"
ipc: host
tty: true
stdin_open: true
command: bash
deploy:
resources:
reservations:

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets

View File

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
@ -154,7 +155,7 @@ class MMLU(datasets.GeneratorBasedBuilder):
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath)
df = pd.read_csv(filepath, header=None)
df.columns = ["question", "A", "B", "C", "D", "answer"]
for i, instance in enumerate(df.to_dict(orient="records")):

View File

@ -4,59 +4,59 @@ Make sure to execute these commands in the `LLaMA-Factory` directory.
## Table of Contents
- [LoRA Fine-Tuning on A Single GPU](#lora-fine-tuning-on-a-single-gpu)
- [QLoRA Fine-Tuning on a Single GPU](#qlora-fine-tuning-on-a-single-gpu)
- [LoRA Fine-Tuning on Multiple GPUs](#lora-fine-tuning-on-multiple-gpus)
- [LoRA Fine-Tuning on Multiple NPUs](#lora-fine-tuning-on-multiple-npus)
- [Full-Parameter Fine-Tuning on Multiple GPUs](#full-parameter-fine-tuning-on-multiple-gpus)
- [LoRA Fine-Tuning](#lora-fine-tuning)
- [QLoRA Fine-Tuning](#qlora-fine-tuning)
- [Full-Parameter Fine-Tuning](#full-parameter-fine-tuning)
- [Merging LoRA Adapters and Quantization](#merging-lora-adapters-and-quantization)
- [Inferring LoRA Fine-Tuned Models](#inferring-lora-fine-tuned-models)
- [Extras](#extras)
Use `CUDA_VISIBLE_DEVICES` (GPU) or `ASCEND_RT_VISIBLE_DEVICES` (NPU) to choose computing devices.
## Examples
### LoRA Fine-Tuning on A Single GPU
### LoRA Fine-Tuning
#### (Continuous) Pre-Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
#### Supervised Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### Multimodal Supervised Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
```
#### Reward Modeling
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```
#### PPO Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
```
#### DPO/ORPO/SimPO Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
```
#### KTO Training
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```
#### Preprocess Dataset
@ -64,93 +64,79 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
It is useful for large dataset, use `tokenized_path` in config to load the preprocessed dataset.
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```
#### Evaluating on MMLU/CMMLU/C-Eval Benchmarks
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
### QLoRA Fine-Tuning on a Single GPU
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
#### Supervised Fine-Tuning on Multiple Nodes
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
```
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
```
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
```
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
```
### LoRA Fine-Tuning on Multiple GPUs
#### Supervised Fine-Tuning with Accelerate on Single Node
```bash
bash examples/lora_multi_gpu/single_node.sh
```
#### Supervised Fine-Tuning with Accelerate on Multiple Nodes
```bash
bash examples/lora_multi_gpu/multi_node.sh
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### Supervised Fine-Tuning with DeepSpeed ZeRO-3 (Weight Sharding)
```bash
bash examples/lora_multi_gpu/ds_zero3.sh
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
### LoRA Fine-Tuning on Multiple NPUs
### QLoRA Fine-Tuning
#### Supervised Fine-Tuning with DeepSpeed ZeRO-0
#### Supervised Fine-Tuning with 4/8-bit Bitsandbytes Quantization (Recommended)
```bash
bash examples/lora_multi_npu/ds_zero0.sh
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
```
### Full-Parameter Fine-Tuning on Multiple GPUs
#### Supervised Fine-Tuning with Accelerate on Single Node
#### Supervised Fine-Tuning with 4/8-bit GPTQ Quantization
```bash
bash examples/full_multi_gpu/single_node.sh
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```
#### Supervised Fine-Tuning with Accelerate on Multiple Nodes
#### Supervised Fine-Tuning with 4-bit AWQ Quantization
```bash
bash examples/full_multi_gpu/multi_node.sh
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```
#### Supervised Fine-Tuning with 2-bit AQLM Quantization
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```
### Full-Parameter Fine-Tuning
#### Supervised Fine-Tuning on Single Node
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### Supervised Fine-Tuning on Multiple Nodes
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### Batch Predicting and Computing BLEU and ROUGE Scores
```bash
bash examples/full_multi_gpu/predict.sh
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
```
### Merging LoRA Adapters and Quantization
@ -160,35 +146,33 @@ bash examples/full_multi_gpu/predict.sh
Note: DO NOT use quantized model or `quantization_bit` when merging LoRA adapters.
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### Quantizing Model using AutoGPTQ
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### Inferring LoRA Fine-Tuned Models
Use `CUDA_VISIBLE_DEVICES=0,1` to infer models on multiple devices.
#### Use CLI
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### Use Web UI
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### Launch OpenAI-style API
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### Extras
@ -196,36 +180,42 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.y
#### Full-Parameter Fine-Tuning using GaLore
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using BAdam
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### LoRA+ Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### PiSSA Fine-Tuning
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```
#### Mixture-of-Depths Fine-Tuning
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro Fine-Tuning
```bash
bash examples/extras/llama_pro/expand.sh
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA Fine-Tuning
```bash
bash examples/extras/fsdp_qlora/single_node.sh
bash examples/extras/fsdp_qlora/train.sh
```

View File

@ -4,59 +4,59 @@
## 目录
- [单 GPU LoRA 微调](#单-gpu-lora-微调)
- [单 GPU QLoRA 微调](#单-gpu-qlora-微调)
- [多 GPU LoRA 微调](#多-gpu-lora-微调)
- [多 NPU LoRA 微调](#多-npu-lora-微调)
- [多 GPU 全参数微调](#多-gpu-全参数微调)
- [LoRA 微调](#lora-微调)
- [QLoRA 微调](#qlora-微调)
- [全参数微调](#全参数微调)
- [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化)
- [推理 LoRA 模型](#推理-lora-模型)
- [杂项](#杂项)
使用 `CUDA_VISIBLE_DEVICES`GPU`ASCEND_RT_VISIBLE_DEVICES`NPU选择计算设备。
## 示例
### 单 GPU LoRA 微调
### LoRA 微调
#### (增量)预训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_pretrain.yaml
llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml
```
#### 指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml
llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### 多模态指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llava1_5_lora_sft.yaml
llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml
```
#### 奖励模型训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_reward.yaml
llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml
```
#### PPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_ppo.yaml
llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml
```
#### DPO/ORPO/SimPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_dpo.yaml
llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml
```
#### KTO 训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_kto.yaml
llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml
```
#### 预处理数据集
@ -64,93 +64,79 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lo
对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_preprocess.yaml
llamafactory-cli train examples/train_lora/llama3_preprocess.yaml
```
#### 在 MMLU/CMMLU/C-Eval 上评估
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli eval examples/lora_single_gpu/llama3_lora_eval.yaml
llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_predict.yaml
llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml
```
### 单 GPU QLoRA 微调
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
#### 多机指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_bitsandbytes.yaml
```
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_gptq.yaml
```
#### 基于 4 比特 AWQ 量化进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_awq.yaml
```
#### 基于 2 比特 AQLM 量化进行指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/qlora_single_gpu/llama3_lora_sft_aqlm.yaml
```
### 多 GPU LoRA 微调
#### 使用 Accelerate 进行单节点训练
```bash
bash examples/lora_multi_gpu/single_node.sh
```
#### 使用 Accelerate 进行多节点训练
```bash
bash examples/lora_multi_gpu/multi_node.sh
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
```
#### 使用 DeepSpeed ZeRO-3 平均分配显存
```bash
bash examples/lora_multi_gpu/ds_zero3.sh
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml
```
### 多 NPU LoRA 微调
### QLoRA 微调
#### 使用 DeepSpeed ZeRO-0 训练
#### 基于 4/8 比特 Bitsandbytes 量化进行指令监督微调(推荐)
```bash
bash examples/lora_multi_npu/ds_zero0.sh
llamafactory-cli train examples/train_qlora/llama3_lora_sft_bitsandbytes.yaml
```
### 多 GPU 全参数微调
#### 使用 DeepSpeed 进行单节点训练
#### 基于 4/8 比特 GPTQ 量化进行指令监督微调
```bash
bash examples/full_multi_gpu/single_node.sh
llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml
```
#### 使用 DeepSpeed 进行多节点训练
#### 基于 4 比特 AWQ 量化进行指令监督微调
```bash
bash examples/full_multi_gpu/multi_node.sh
llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml
```
#### 基于 2 比特 AQLM 量化进行指令监督微调
```bash
llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml
```
### 全参数微调
#### 在单机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### 在多机上进行指令监督微调
```bash
FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml
```
#### 批量预测并计算 BLEU 和 ROUGE 分数
```bash
bash examples/full_multi_gpu/predict.sh
llamafactory-cli train examples/train_full/llama3_full_predict.yaml
```
### 合并 LoRA 适配器与模型量化
@ -160,35 +146,33 @@ bash examples/full_multi_gpu/predict.sh
注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
```
#### 使用 AutoGPTQ 量化模型
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
llamafactory-cli export examples/merge_lora/llama3_gptq.yaml
```
### 推理 LoRA 模型
使用 `CUDA_VISIBLE_DEVICES=0,1` 进行多卡推理。
#### 使用命令行接口
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
```
#### 使用浏览器界面
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml
```
#### 启动 OpenAI 风格 API
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.yaml
llamafactory-cli api examples/inference/llama3_lora_sft.yaml
```
### 杂项
@ -196,36 +180,42 @@ CUDA_VISIBLE_DEVICES=0 llamafactory-cli api examples/inference/llama3_lora_sft.y
#### 使用 GaLore 进行全参数训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
```
#### 使用 BAdam 进行全参数训练
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### LoRA+ 微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml
```
#### PiSSA 微调
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```
#### 深度混合微调
```bash
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml
```
#### LLaMA-Pro 微调
```bash
bash examples/extras/llama_pro/expand.sh
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```
#### FSDP+QLoRA 微调
```bash
bash examples/extras/fsdp_qlora/single_node.sh
bash examples/extras/fsdp_qlora/train.sh
```

View File

@ -5,16 +5,16 @@ downcast_bf16: 'no'
fsdp_config:
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_cpu_ram_efficient_loading: true
fsdp_forward_prefetch: false
fsdp_offload_params: true
fsdp_cpu_ram_efficient_loading: true
fsdp_offload_params: true # offload may affect training speed
fsdp_sharding_strategy: FULL_SHARD
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sync_module_states: true
fsdp_use_orig_params: false
fsdp_use_orig_params: true
machine_rank: 0
main_training_function: main
mixed_precision: fp16
mixed_precision: fp16 # or bf16
num_machines: 1 # the number of nodes
num_processes: 2 # the number of GPUs in all nodes
rdzv_backend: static

View File

@ -1,18 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_process_ip: 192.168.0.1
main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 8 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@ -1,16 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1 # the number of nodes
num_processes: 4 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@ -1,18 +0,0 @@
compute_environment: LOCAL_MACHINE
debug: false
distributed_type: MULTI_GPU
downcast_bf16: 'no'
gpu_ids: all
machine_rank: 1
main_process_ip: 192.168.0.1
main_process_port: 29555
main_training_function: main
mixed_precision: fp16
num_machines: 2 # the number of nodes
num_processes: 8 # the number of GPUs in all nodes
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false

View File

@ -28,14 +28,14 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
pure_bf16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -6,10 +6,7 @@ quantization_bit: 4
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
### ddp
ddp_timeout: 180000000
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
@ -29,14 +26,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -1,10 +1,6 @@
#!/bin/bash
# DO NOT use GPTQ/AWQ model in FSDP+QLoRA
pip install "transformers>=4.39.1"
pip install "accelerate>=0.28.0"
pip install "bitsandbytes>=0.43.0"
CUDA_VISIBLE_DEVICES=0,1 accelerate launch \
--config_file examples/accelerate/fsdp_config.yaml \
src/train.py examples/extras/fsdp_qlora/llama3_lora_sft.yaml

View File

@ -29,14 +29,14 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 1
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
pure_bf16: true
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -27,14 +27,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
loraplus_lr_ratio: 16.0
### dataset
@ -26,14 +26,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -26,14 +26,15 @@ overwrite_output_dir: true
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
optim: paged_adamw_8bit
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,10 +5,10 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
### ddp
ddp_timeout: 180000000
lora_target: all
pissa_init: true
pissa_iter: 4
pissa_convert: true
### dataset
dataset: identity,alpaca_en_demo
@ -27,15 +27,16 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 0.0001
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -1,15 +0,0 @@
#!/bin/bash
NPROC_PER_NODE=4
NNODES=2
RANK=0
MASTER_ADDR=192.168.0.1
MASTER_PORT=29500
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
src/train.py examples/full_multi_gpu/llama3_full_sft.yaml

View File

@ -1,5 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file examples/accelerate/single_config.yaml \
src/train.py examples/full_multi_gpu/llama3_full_predict.yaml

View File

@ -1,15 +0,0 @@
#!/bin/bash
NPROC_PER_NODE=4
NNODES=1
RANK=0
MASTER_ADDR=127.0.0.1
MASTER_PORT=29500
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
src/train.py examples/full_multi_gpu/llama3_full_sft.yaml

View File

@ -1,15 +0,0 @@
#!/bin/bash
NPROC_PER_NODE=4
NNODES=1
RANK=0
MASTER_ADDR=127.0.0.1
MASTER_PORT=29500
CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
src/train.py examples/lora_multi_gpu/llama3_lora_sft_ds.yaml

View File

@ -1,6 +0,0 @@
#!/bin/bash
# also launch it on slave machine using slave_config.yaml
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file examples/accelerate/master_config.yaml \
src/train.py examples/lora_multi_gpu/llama3_lora_sft.yaml

View File

@ -1,5 +0,0 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--config_file examples/accelerate/single_config.yaml \
src/train.py examples/lora_multi_gpu/llama3_lora_sft.yaml

View File

@ -1,15 +0,0 @@
#!/bin/bash
NPROC_PER_NODE=4
NNODES=1
RANK=0
MASTER_ADDR=127.0.0.1
MASTER_PORT=29500
ASCEND_RT_VISIBLE_DEVICES=0,1,2,3 torchrun \
--nproc_per_node $NPROC_PER_NODE \
--nnodes $NNODES \
--node_rank $RANK \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
src/train.py examples/lora_multi_npu/llama3_lora_sft_ds.yaml

View File

@ -5,9 +5,6 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: sft
do_train: true
finetuning_type: full
### ddp
ddp_timeout: 180000000
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
@ -28,14 +25,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: dpo
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
pref_beta: 0.1
pref_loss: sigmoid # [sigmoid (dpo), orpo, simpo]
@ -27,14 +27,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.000005
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,8 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: kto
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
pref_beta: 0.1
### dataset
dataset: kto_en_demo
@ -25,14 +26,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.000005
learning_rate: 5.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -6,7 +6,7 @@ reward_model: saves/llama3-8b/lora/reward
stage: ppo
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
@ -26,11 +26,12 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.00001
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### generate
max_new_tokens: 512

View File

@ -22,3 +22,4 @@ overwrite_output_dir: true
### eval
per_device_eval_batch_size: 1
predict_with_generate: true
ddp_timeout: 180000000

View File

@ -5,7 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: pt
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: c4_demo
@ -24,14 +24,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: rm
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: dpo_en_demo
@ -25,14 +25,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.00001
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
@ -25,14 +25,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,10 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
### ddp
ddp_timeout: 180000000
lora_target: all
deepspeed: examples/deepspeed/ds_z0_config.json
### dataset
@ -29,14 +26,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,10 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
### ddp
ddp_timeout: 180000000
lora_target: all
deepspeed: examples/deepspeed/ds_z3_config.json
### dataset
@ -29,14 +26,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 2
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: identity,alpaca_en_demo

View File

@ -6,7 +6,7 @@ visual_inputs: true
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: mllm_demo
@ -26,14 +26,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: ISTA-DASLab/Meta-Llama-3-8B-Instruct-AQLM-2Bit-1x16
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
@ -25,14 +25,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-AWQ
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
@ -25,14 +25,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -6,7 +6,7 @@ quantization_bit: 4
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
@ -26,14 +26,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -5,7 +5,7 @@ model_name_or_path: TechxGenus/Meta-Llama-3-8B-Instruct-GPTQ
stage: sft
do_train: true
finetuning_type: lora
lora_target: q_proj,v_proj
lora_target: all
### dataset
dataset: identity,alpaca_en_demo
@ -25,14 +25,15 @@ overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 0.0001
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_steps: 0.1
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
evaluation_strategy: steps
eval_strategy: steps
eval_steps: 500

View File

@ -1,12 +1,13 @@
transformers>=4.37.2
datasets>=2.14.3
accelerate>=0.27.2
peft>=0.10.0
trl>=0.8.1
transformers>=4.41.2
datasets>=2.16.0
accelerate>=0.30.1
peft>=0.11.1
trl>=0.8.6
gradio>=4.0.0
scipy
einops
sentencepiece
tiktoken
protobuf
uvicorn
pydantic

View File

@ -1,7 +1,20 @@
# coding=utf-8
# Calculates the flops of pre-trained models.
# Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
# Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/
# Copyright 2024 Microsoft Corporation and the LlamaFactory team.
#
# This code is inspired by the Microsoft's DeepSpeed library.
# https://www.deepspeed.ai/tutorials/flops-profiler/
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fire
import torch
@ -17,6 +30,10 @@ def calculate_flops(
seq_length: int = 256,
flash_attn: str = "auto",
):
r"""
Calculates the flops of pre-trained models.
Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512
"""
with get_accelerator().device(0):
chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn))
fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device)

View File

@ -1,7 +1,20 @@
# coding=utf-8
# Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters.
# Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16
# Inspired by: https://github.com/imoneoi/openchat/blob/master/ochat/training_deepspeed/train.py
# Copyright 2024 imoneoi and the LlamaFactory team.
#
# This code is inspired by the imoneoi's OpenChat library.
# https://github.com/imoneoi/openchat/blob/3.6.0/ochat/training_deepspeed/train.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Literal
@ -32,6 +45,10 @@ def calculate_lr(
cutoff_len: int = 1024, # i.e. maximum input length during training
is_mistral: bool = False, # mistral model uses a smaller learning rate,
):
r"""
Calculates the optimal learning rate for 7B/13B models using LLaMA's hyper-parameters.
Usage: python cal_lr.py --model_name_or_path path_to_model --dataset alpaca_en --cutoff_len 1024 --batch_size 16
"""
model_args, data_args, training_args, _, _ = get_train_args(
dict(
stage=stage,

View File

@ -1,6 +1,17 @@
# coding=utf-8
# Calculates the ppl on the dataset of the pre-trained models.
# Usage: python cal_ppl.py --model_name_or_path path_to_model --save_name ppl.json
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from dataclasses import dataclass
@ -56,6 +67,10 @@ def cal_ppl(
max_samples: Optional[int] = None,
train_on_prompt: bool = False,
):
r"""
Calculates the ppl on the dataset of the pre-trained models.
Usage: python cal_ppl.py --model_name_or_path path_to_model --save_name ppl.json
"""
model_args, data_args, training_args, finetuning_args, _ = get_train_args(
dict(
stage=stage,

View File

@ -1,6 +1,17 @@
# coding=utf-8
# Calculates the distribution of the input lengths in the dataset.
# Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
@ -19,6 +30,10 @@ def length_cdf(
template: str = "default",
interval: int = 1000,
):
r"""
Calculates the distribution of the input lengths in the dataset.
Usage: python length_cdf.py --model_name_or_path path_to_model --dataset alpaca_en --template default
"""
model_args, data_args, training_args, _, _ = get_train_args(
dict(
stage="sft",

View File

@ -1,7 +1,20 @@
# coding=utf-8
# Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
# Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
# Inspired by: https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
# Copyright 2024 Tencent Inc. and the LlamaFactory team.
#
# This code is inspired by the Tencent's LLaMA-Pro library.
# https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
@ -37,6 +50,10 @@ def block_expansion(
shard_size: Optional[str] = "2GB",
save_safetensors: Optional[bool] = False,
):
r"""
Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.
Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8
"""
config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path)
num_layers = getattr(config, "num_hidden_layers")
setattr(config, "num_hidden_layers", num_layers + num_expand)
@ -103,11 +120,11 @@ def block_expansion(
json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir))
print("Fine-tune this model with:")
print(" --model_name_or_path {} \\".format(output_dir))
print(" --finetuning_type freeze \\")
print(" --freeze_trainable_layers {} \\".format(num_expand))
print(" --use_llama_pro")
print("- Fine-tune this model with:")
print("model_name_or_path: {}".format(output_dir))
print("finetuning_type: freeze")
print("freeze_trainable_layers: {}".format(num_expand))
print("use_llama_pro: true")
if __name__ == "__main__":

View File

@ -1,8 +1,17 @@
# coding=utf-8
# Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
# Usage: python llamafy_baichuan2.py --input_dir input --output_dir output
# Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py
# Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
@ -79,6 +88,11 @@ def save_config(input_dir: str, output_dir: str):
def llamafy_baichuan2(
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
):
r"""
Converts the Baichuan2-7B model in the same format as LLaMA2-7B.
Usage: python llamafy_baichuan2.py --input_dir input --output_dir output
Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied
"""
try:
os.makedirs(output_dir, exist_ok=False)
except Exception as e:

View File

@ -1,7 +1,17 @@
# coding=utf-8
# Converts the Qwen models in the same format as LLaMA2.
# Usage: python llamafy_qwen.py --input_dir input --output_dir output
# Converted model: https://huggingface.co/hiyouga/Qwen-14B-Chat-LLaMAfied
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
@ -131,6 +141,11 @@ def save_config(input_dir: str, output_dir: str, torch_dtype: str):
def llamafy_qwen(
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
):
r"""
Converts the Qwen models in the same format as LLaMA2.
Usage: python llamafy_qwen.py --input_dir input --output_dir output
Converted model: https://huggingface.co/hiyouga/Qwen-14B-Chat-LLaMAfied
"""
try:
os.makedirs(output_dir, exist_ok=False)
except Exception as e:

View File

@ -1,14 +1,25 @@
# coding=utf-8
# Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ)
# Usage: python loftq_init.py --model_name_or_path path_to_model --save_dir output_dir
# Inspired by: https://github.com/huggingface/peft/blob/main/examples/loftq_finetuning/quantize_save_load.py
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is based on the HuggingFace's PEFT library.
# https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Optional
from typing import TYPE_CHECKING
import fire
import torch
import torch.nn as nn
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer
@ -17,38 +28,21 @@ if TYPE_CHECKING:
from transformers import PreTrainedModel
class Shell(nn.Module):
def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
super().__init__()
self.weight = nn.Parameter(weight, requires_grad=False)
if bias is not None:
self.bias = nn.Parameter(bias, requires_grad=False)
def unwrap_model(model: nn.Module, pattern=".base_layer") -> None:
for name in {k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k}:
parent_name = ".".join(name.split(".")[:-1])
child_name = name.split(".")[-1]
parent_module = model.get_submodule(parent_name)
child_module = getattr(parent_module, child_name)
base_layer = getattr(child_module, "base_layer")
weight = getattr(base_layer, "weight", None)
bias = getattr(base_layer, "bias", None)
setattr(parent_module, child_name, Shell(weight, bias))
print("Model unwrapped.")
def quantize_loftq(
model_name_or_path: str,
save_dir: str,
loftq_bits: Optional[int] = 4,
loftq_iter: Optional[int] = 1,
lora_alpha: Optional[int] = None,
lora_rank: Optional[int] = 16,
lora_target: Optional[str] = "q_proj,v_proj",
save_safetensors: Optional[bool] = False,
output_dir: str,
loftq_bits: int = 4,
loftq_iter: int = 4,
lora_alpha: int = None,
lora_rank: int = 16,
lora_dropout: float = 0,
lora_target: str = "q_proj,v_proj",
save_safetensors: bool = True,
):
r"""
Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ)
Usage: python loftq_init.py --model_name_or_path path_to_model --output_dir output_dir
"""
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
loftq_config = LoftQConfig(loftq_bits=loftq_bits, loftq_iter=loftq_iter)
@ -57,25 +51,34 @@ def quantize_loftq(
inference_mode=True,
r=lora_rank,
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
lora_dropout=0.1,
lora_dropout=lora_dropout,
target_modules=[name.strip() for name in lora_target.split(",")],
init_lora_weights="loftq",
loftq_config=loftq_config,
)
# Init LoftQ model
lora_model = get_peft_model(model, lora_config)
base_model: "PreTrainedModel" = lora_model.get_base_model()
print("Initializing LoftQ weights, it may be take several minutes, wait patiently.")
peft_model = get_peft_model(model, lora_config)
loftq_dir = os.path.join(output_dir, "loftq_init")
# Save LoftQ model
setattr(lora_model.base_model.peft_config["default"], "base_model_name_or_path", save_dir)
setattr(lora_model.base_model.peft_config["default"], "init_lora_weights", True)
lora_model.save_pretrained(os.path.join(save_dir, "adapters"), safe_serialization=save_safetensors)
setattr(peft_model.peft_config["default"], "base_model_name_or_path", output_dir)
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply loftq again
peft_model.save_pretrained(loftq_dir, safe_serialization=save_safetensors)
print("Adapter weights saved in {}".format(loftq_dir))
# Save base model
unwrap_model(base_model)
base_model.save_pretrained(save_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(save_dir)
base_model: "PreTrainedModel" = peft_model.unload()
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(output_dir)
print("Model weights saved in {}".format(output_dir))
print("- Fine-tune this model with:")
print("model_name_or_path: {}".format(output_dir))
print("adapter_name_or_path: {}".format(loftq_dir))
print("finetuning_type: lora")
print("quantization_bit: {}".format(loftq_bits))
if __name__ == "__main__":

82
scripts/pissa_init.py Normal file
View File

@ -0,0 +1,82 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is based on the HuggingFace's PEFT library.
# https://github.com/huggingface/peft/blob/v0.11.0/examples/pissa_finetuning/preprocess.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING
import fire
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer
if TYPE_CHECKING:
from transformers import PreTrainedModel
def quantize_pissa(
model_name_or_path: str,
output_dir: str,
pissa_iter: int = 4,
lora_alpha: int = None,
lora_rank: int = 16,
lora_dropout: float = 0,
lora_target: str = "q_proj,v_proj",
save_safetensors: bool = True,
):
r"""
Initializes LoRA weights with Principal Singular values and Singular vectors Adaptation (PiSSA)
Usage: python pissa_init.py --model_name_or_path path_to_model --output_dir output_dir
"""
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=lora_rank,
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
lora_dropout=lora_dropout,
target_modules=[name.strip() for name in lora_target.split(",")],
init_lora_weights="pissa" if pissa_iter == -1 else "pissa_niter_{}".format(pissa_iter)
)
# Init PiSSA model
peft_model = get_peft_model(model, lora_config)
pissa_dir = os.path.join(output_dir, "pissa_init")
# Save PiSSA model
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply pissa again
peft_model.save_pretrained(pissa_dir, safe_serialization=save_safetensors)
print("Adapter weights saved in {}".format(pissa_dir))
# Save base model
base_model: "PreTrainedModel" = peft_model.unload()
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(output_dir)
print("Model weights saved in {}".format(output_dir))
print("- Fine-tune this model with:")
print("model_name_or_path: {}".format(output_dir))
print("adapter_name_or_path: {}".format(pissa_dir))
print("finetuning_type: lora")
print("pissa_init: false")
print("pissa_convert: true")
print("- and optionally with:")
print("quantization_bit: 4")
if __name__ == "__main__":
fire.Fire(quantize_pissa)

View File

@ -1,3 +1,18 @@
# coding=utf-8
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from typing import Sequence
@ -20,7 +35,7 @@ def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float:
def main():
client = OpenAI(
api_key="0",
api_key="{}".format(os.environ.get("API_KEY", "0")),
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
)
tools = [

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
@ -5,7 +19,7 @@ from setuptools import find_packages, setup
def get_version():
with open(os.path.join("src", "llamafactory", "cli.py"), "r", encoding="utf-8") as f:
with open(os.path.join("src", "llamafactory", "extras", "env.py"), "r", encoding="utf-8") as f:
file_content = f.read()
pattern = r"{}\W*=\W*\"([^\"]+)\"".format("VERSION")
(version,) = re.findall(pattern, file_content)
@ -21,18 +35,19 @@ def get_requires():
extra_require = {
"torch": ["torch>=1.13.1"],
"torch-npu": ["torch==2.1.0", "torch-npu==2.1.0.post3", "decorator"],
"metrics": ["nltk", "jieba", "rouge-chinese"],
"deepspeed": ["deepspeed>=0.10.0,<=0.14.0"],
"deepspeed": ["deepspeed>=0.10.0"],
"bitsandbytes": ["bitsandbytes>=0.39.0"],
"vllm": ["vllm>=0.4.0"],
"vllm": ["vllm>=0.4.3"],
"galore": ["galore-torch"],
"badam": ["badam"],
"gptq": ["optimum>=1.16.0", "auto-gptq>=0.5.0"],
"awq": ["autoawq"],
"aqlm": ["aqlm[gpu]>=1.1.0"],
"qwen": ["tiktoken", "transformers_stream_generator"],
"qwen": ["transformers_stream_generator"],
"modelscope": ["modelscope"],
"quality": ["ruff"],
"dev": ["ruff", "pytest"],
}

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import uvicorn

View File

@ -1,4 +1,18 @@
# Level: api, webui > chat, eval, train > data, model > extras, hparams
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Level: api, webui > chat, eval, train > data, model > hparams > extras
from .cli import VERSION

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from contextlib import asynccontextmanager
from typing import Optional

View File

@ -1,10 +1,27 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import base64
import io
import json
import os
import uuid
from typing import TYPE_CHECKING, AsyncGenerator, Dict, List, Optional, Tuple
from ..data import Role as DataRole
from ..extras.logging import get_logger
from ..extras.packages import is_fastapi_available
from ..extras.packages import is_fastapi_available, is_pillow_available, is_requests_available
from .common import dictify, jsonify
from .protocol import (
ChatCompletionMessage,
@ -25,7 +42,17 @@ if is_fastapi_available():
from fastapi import HTTPException, status
if is_pillow_available():
from PIL import Image
if is_requests_available():
import requests
if TYPE_CHECKING:
from numpy.typing import NDArray
from ..chat import ChatModel
from .protocol import ChatCompletionRequest, ScoreEvaluationRequest
@ -40,7 +67,9 @@ ROLE_MAPPING = {
}
def _process_request(request: "ChatCompletionRequest") -> Tuple[List[Dict[str, str]], str, str]:
def _process_request(
request: "ChatCompletionRequest",
) -> Tuple[List[Dict[str, str]], Optional[str], Optional[str], Optional["NDArray"]]:
logger.info("==== request ====\n{}".format(json.dumps(dictify(request), indent=2, ensure_ascii=False)))
if len(request.messages) == 0:
@ -49,12 +78,13 @@ def _process_request(request: "ChatCompletionRequest") -> Tuple[List[Dict[str, s
if request.messages[0].role == Role.SYSTEM:
system = request.messages.pop(0).content
else:
system = ""
system = None
if len(request.messages) % 2 == 0:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Only supports u/a/u/a/u...")
input_messages = []
image = None
for i, message in enumerate(request.messages):
if i % 2 == 0 and message.role not in [Role.USER, Role.TOOL]:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid role")
@ -66,6 +96,21 @@ def _process_request(request: "ChatCompletionRequest") -> Tuple[List[Dict[str, s
arguments = message.tool_calls[0].function.arguments
content = json.dumps({"name": name, "argument": arguments}, ensure_ascii=False)
input_messages.append({"role": ROLE_MAPPING[Role.FUNCTION], "content": content})
elif isinstance(message.content, list):
for input_item in message.content:
if input_item.type == "text":
input_messages.append({"role": ROLE_MAPPING[message.role], "content": input_item.text})
else:
image_url = input_item.image_url.url
if image_url.startswith("data:image"): # base64 image
image_data = base64.b64decode(image_url.split(",", maxsplit=1)[1])
image_path = io.BytesIO(image_data)
elif os.path.isfile(image_url): # local file
image_path = open(image_url, "rb")
else: # web uri
image_path = requests.get(image_url, stream=True).raw
image = Image.open(image_path).convert("RGB")
else:
input_messages.append({"role": ROLE_MAPPING[message.role], "content": message.content})
@ -76,9 +121,9 @@ def _process_request(request: "ChatCompletionRequest") -> Tuple[List[Dict[str, s
except Exception:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Invalid tools")
else:
tools = ""
tools = None
return input_messages, system, tools
return input_messages, system, tools, image
def _create_stream_chat_completion_chunk(
@ -97,11 +142,12 @@ async def create_chat_completion_response(
request: "ChatCompletionRequest", chat_model: "ChatModel"
) -> "ChatCompletionResponse":
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
input_messages, system, tools = _process_request(request)
input_messages, system, tools, image = _process_request(request)
responses = await chat_model.achat(
input_messages,
system,
tools,
image,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,
@ -145,7 +191,7 @@ async def create_stream_chat_completion_response(
request: "ChatCompletionRequest", chat_model: "ChatModel"
) -> AsyncGenerator[str, None]:
completion_id = "chatcmpl-{}".format(uuid.uuid4().hex)
input_messages, system, tools = _process_request(request)
input_messages, system, tools, image = _process_request(request)
if tools:
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Cannot stream function calls.")
@ -159,6 +205,7 @@ async def create_stream_chat_completion_response(
input_messages,
system,
tools,
image,
do_sample=request.do_sample,
temperature=request.temperature,
top_p=request.top_p,

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from typing import TYPE_CHECKING, Any, Dict

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
from enum import Enum, unique
from typing import Any, Dict, List, Optional, Union
@ -56,9 +70,19 @@ class FunctionCall(BaseModel):
function: Function
class ImageURL(BaseModel):
url: str
class MultimodalInputItem(BaseModel):
type: Literal["text", "image_url"]
text: Optional[str] = None
image_url: Optional[ImageURL] = None
class ChatMessage(BaseModel):
role: Role
content: Optional[str] = None
content: Optional[Union[str, List[MultimodalInputItem]]] = None
tool_calls: Optional[List[FunctionCall]] = None

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .base_engine import BaseEngine
from .chat_model import ChatModel

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, List, Literal, Optional, Sequence, Union

View File

@ -1,3 +1,20 @@
# Copyright 2024 THUDM and the LlamaFactory team.
#
# This code is inspired by the THUDM's ChatGLM implementation.
# https://github.com/THUDM/ChatGLM-6B/blob/main/cli_demo.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
from threading import Thread
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import concurrent.futures
import os
@ -8,6 +22,7 @@ import torch
from transformers import GenerationConfig, TextIteratorStreamer
from ..data import get_template_and_fix_tokenizer
from ..extras.logging import get_logger
from ..extras.misc import get_logits_processor
from ..model import load_model, load_tokenizer
from .base_engine import BaseEngine, Response
@ -23,6 +38,9 @@ if TYPE_CHECKING:
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
logger = get_logger(__name__)
class HuggingfaceEngine(BaseEngine):
def __init__(
self,
@ -79,6 +97,7 @@ class HuggingfaceEngine(BaseEngine):
prompt_length = len(prompt_ids)
inputs = torch.tensor([prompt_ids], device=model.device)
attention_mask = torch.ones_like(inputs, dtype=torch.bool)
do_sample: Optional[bool] = input_kwargs.pop("do_sample", None)
temperature: Optional[float] = input_kwargs.pop("temperature", None)
@ -92,7 +111,7 @@ class HuggingfaceEngine(BaseEngine):
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
if stop is not None:
raise ValueError("Stop parameter is not supported in Huggingface engine yet.")
logger.warning("Stop parameter is not supported in Huggingface engine yet.")
generating_args = generating_args.copy()
generating_args.update(
@ -132,6 +151,7 @@ class HuggingfaceEngine(BaseEngine):
gen_kwargs = dict(
inputs=inputs,
attention_mask=attention_mask,
generation_config=GenerationConfig(**generating_args),
logits_processor=get_logits_processor(),
)

View File

@ -1,19 +1,37 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import uuid
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union
from ..data import get_template_and_fix_tokenizer
from ..extras.logging import get_logger
from ..extras.misc import get_device_count, infer_optim_dtype
from ..extras.packages import is_vllm_available
from ..extras.misc import get_device_count
from ..extras.packages import is_vllm_available, is_vllm_version_greater_than_0_5
from ..model import load_config, load_tokenizer
from ..model.utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
from ..model.model_utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
from .base_engine import BaseEngine, Response
if is_vllm_available():
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
from vllm.lora.request import LoRARequest
from vllm.sequence import MultiModalData
if is_vllm_version_greater_than_0_5():
from vllm.multimodal.image import ImagePixelData
else:
from vllm.sequence import MultiModalData
if TYPE_CHECKING:
@ -35,8 +53,6 @@ class VllmEngine(BaseEngine):
generating_args: "GeneratingArguments",
) -> None:
config = load_config(model_args) # may download model from ms hub
infer_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
infer_dtype = str(infer_dtype).split(".")[-1]
self.can_generate = finetuning_args.stage == "sft"
tokenizer_module = load_tokenizer(model_args)
@ -50,7 +66,7 @@ class VllmEngine(BaseEngine):
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"download_dir": model_args.cache_dir,
"dtype": infer_dtype,
"dtype": model_args.infer_dtype,
"max_model_len": model_args.vllm_maxlen,
"tensor_parallel_size": get_device_count() or 1,
"gpu_memory_utilization": model_args.vllm_gpu_util,
@ -70,7 +86,6 @@ class VllmEngine(BaseEngine):
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
engine_args["image_feature_size"] = self.image_feature_size
if getattr(config, "is_yi_vl_derived_model", None):
# bug in vllm 0.4.2, see: https://github.com/vllm-project/vllm/pull/4828
import vllm.model_executor.models.llava
logger.info("Detected Yi-VL model, applying projector patch.")
@ -109,7 +124,10 @@ class VllmEngine(BaseEngine):
if self.processor is not None and image is not None: # add image features
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"]
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
if is_vllm_version_greater_than_0_5():
multi_modal_data = ImagePixelData(image=pixel_values)
else: # TODO: remove vllm 0.4.3 support
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
else:
multi_modal_data = None
@ -158,12 +176,10 @@ class VllmEngine(BaseEngine):
)
result_generator = self.model.generate(
prompt=None,
inputs={"prompt_token_ids": prompt_ids, "multi_modal_data": multi_modal_data},
sampling_params=sampling_params,
request_id=request_id,
prompt_token_ids=prompt_ids,
lora_request=self.lora_request,
multi_modal_data=multi_modal_data,
)
return result_generator

View File

@ -1,9 +1,30 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import subprocess
import sys
from enum import Enum, unique
from . import launcher
from .api.app import run_api
from .chat.chat_model import run_chat
from .eval.evaluator import run_eval
from .extras.env import VERSION, print_env
from .extras.logging import get_logger
from .extras.misc import get_device_count
from .train.tuner import export_model, run_exp
from .webui.interface import run_web_demo, run_web_ui
@ -23,8 +44,6 @@ USAGE = (
+ "-" * 70
)
VERSION = "0.7.2.dev0"
WELCOME = (
"-" * 58
+ "\n"
@ -37,11 +56,14 @@ WELCOME = (
+ "-" * 58
)
logger = get_logger(__name__)
@unique
class Command(str, Enum):
API = "api"
CHAT = "chat"
ENV = "env"
EVAL = "eval"
EXPORT = "export"
TRAIN = "train"
@ -57,12 +79,35 @@ def main():
run_api()
elif command == Command.CHAT:
run_chat()
elif command == Command.ENV:
print_env()
elif command == Command.EVAL:
run_eval()
elif command == Command.EXPORT:
export_model()
elif command == Command.TRAIN:
run_exp()
force_torchrun = os.environ.get("FORCE_TORCHRUN", "0").lower() in ["true", "1"]
if force_torchrun or get_device_count() > 1:
master_addr = os.environ.get("MASTER_ADDR", "127.0.0.1")
master_port = os.environ.get("MASTER_PORT", str(random.randint(20001, 29999)))
logger.info("Initializing distributed tasks at: {}:{}".format(master_addr, master_port))
subprocess.run(
(
"torchrun --nnodes {nnodes} --node_rank {node_rank} --nproc_per_node {nproc_per_node} "
"--master_addr {master_addr} --master_port {master_port} {file_name} {args}"
).format(
nnodes=os.environ.get("NNODES", "1"),
node_rank=os.environ.get("RANK", "0"),
nproc_per_node=os.environ.get("NPROC_PER_NODE", str(get_device_count())),
master_addr=master_addr,
master_port=master_port,
file_name=launcher.__file__,
args=" ".join(sys.argv[1:]),
),
shell=True,
)
else:
run_exp()
elif command == Command.WEBDEMO:
run_web_demo()
elif command == Command.WEBUI:

View File

@ -1,16 +1,30 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .collator import KTODataCollatorWithPadding, PairwiseDataCollatorWithPadding
from .data_utils import Role, split_dataset
from .loader import get_dataset
from .template import Template, get_template_and_fix_tokenizer, templates
from .utils import Role, split_dataset
from .template import TEMPLATES, Template, get_template_and_fix_tokenizer
__all__ = [
"KTODataCollatorWithPadding",
"PairwiseDataCollatorWithPadding",
"get_dataset",
"Template",
"get_template_and_fix_tokenizer",
"templates",
"Role",
"split_dataset",
"get_dataset",
"TEMPLATES",
"Template",
"get_template_and_fix_tokenizer",
]

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import partial
from typing import TYPE_CHECKING, Any, Dict, List, Union
@ -5,11 +19,12 @@ from typing import TYPE_CHECKING, Any, Dict, List, Union
from datasets import Features
from ..extras.logging import get_logger
from .utils import Role
from .data_utils import Role
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments
from ..hparams import DataArguments
from .parser import DatasetAttr
@ -175,7 +190,10 @@ def convert_sharegpt(
def align_dataset(
dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments"
dataset: Union["Dataset", "IterableDataset"],
dataset_attr: "DatasetAttr",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
r"""
Aligned dataset:
@ -208,7 +226,7 @@ def align_dataset(
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
desc="Converting format of dataset",
)

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Any, Dict, Sequence

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from enum import Enum, unique
from typing import TYPE_CHECKING, Dict, List, Tuple, Union

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
from abc import ABC, abstractmethod

View File

@ -1,24 +1,38 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import os
import sys
from typing import TYPE_CHECKING, Literal, Optional, Union
import numpy as np
from datasets import load_dataset, load_from_disk
from ..extras.constants import FILEEXT2TYPE
from ..extras.logging import get_logger
from ..extras.misc import has_tokenized_data
from .aligner import align_dataset
from .data_utils import merge_dataset
from .parser import get_dataset_list
from .preprocess import get_preprocess_and_print_func
from .template import get_template_and_fix_tokenizer
from .utils import merge_dataset
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments
from ..hparams import DataArguments, ModelArguments
from .parser import DatasetAttr
@ -31,6 +45,7 @@ def load_single_dataset(
dataset_attr: "DatasetAttr",
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
) -> Union["Dataset", "IterableDataset"]:
logger.info("Loading dataset {}...".format(dataset_attr))
data_path, data_name, data_dir, data_files = None, None, None, None
@ -61,9 +76,9 @@ def load_single_dataset(
raise ValueError("File {} not found.".format(local_path))
if data_path is None:
raise ValueError("File extension must be txt, csv, json or jsonl.")
raise ValueError("Allowed file types: {}.".format(",".join(FILEEXT2TYPE.keys())))
else:
raise NotImplementedError
raise NotImplementedError("Unknown load type: {}.".format(dataset_attr.load_from))
if dataset_attr.load_from == "ms_hub":
try:
@ -106,18 +121,30 @@ def load_single_dataset(
if data_args.streaming and (dataset_attr.load_from == "file"): # faster than specifying streaming=True
dataset = dataset.to_iterable_dataset() # TODO: add num shards parameter
if data_args.max_samples is not None: # truncate dataset
num_samples = min(data_args.max_samples, len(dataset))
dataset = dataset.select(range(num_samples))
if dataset_attr.num_samples is not None and not data_args.streaming:
target_num = dataset_attr.num_samples
indexes = np.random.permutation(len(dataset))[:target_num]
target_num -= len(indexes)
if target_num > 0:
expand_indexes = np.random.choice(len(dataset), target_num)
indexes = np.concatenate((indexes, expand_indexes), axis=0)
return align_dataset(dataset, dataset_attr, data_args)
assert len(indexes) == dataset_attr.num_samples, "Sample num mismatched."
dataset = dataset.select(indexes)
logger.info("Sampled {} examples from dataset {}.".format(dataset_attr.num_samples, dataset_attr))
if data_args.max_samples is not None: # truncate dataset
max_samples = min(data_args.max_samples, len(dataset))
dataset = dataset.select(range(max_samples))
return align_dataset(dataset, dataset_attr, data_args, training_args)
def get_dataset(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "kto"],
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"] = None,
) -> Union["Dataset", "IterableDataset"]:
@ -144,7 +171,8 @@ def get_dataset(
if (stage == "rm" and dataset_attr.ranking is False) or (stage != "rm" and dataset_attr.ranking is True):
raise ValueError("The dataset is not applicable in the current training stage.")
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args))
all_datasets.append(load_single_dataset(dataset_attr, model_args, data_args, training_args))
dataset = merge_dataset(all_datasets, data_args, training_args)
with training_args.main_process_first(desc="pre-process dataset"):
@ -156,7 +184,7 @@ def get_dataset(
if not data_args.streaming:
kwargs = dict(
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=(not data_args.overwrite_cache),
load_from_cache_file=(not data_args.overwrite_cache) or (training_args.local_process_index != 0),
desc="Running tokenizer on dataset",
)
@ -166,7 +194,7 @@ def get_dataset(
if training_args.should_save:
dataset.save_to_disk(data_args.tokenized_path)
logger.info("Tokenized dataset saved at {}.".format(data_args.tokenized_path))
logger.info("Please restart the training with `--tokenized_path {}`.".format(data_args.tokenized_path))
logger.info("Please restart the training with `tokenized_path: {}`.".format(data_args.tokenized_path))
sys.exit(0)

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from dataclasses import dataclass
@ -20,11 +34,12 @@ class DatasetAttr:
""" basic configs """
load_from: Literal["hf_hub", "ms_hub", "script", "file"]
dataset_name: str
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
ranking: bool = False
""" extra configs """
subset: Optional[str] = None
folder: Optional[str] = None
ranking: bool = False
formatting: Literal["alpaca", "sharegpt"] = "alpaca"
num_samples: Optional[int] = None
""" common columns """
system: Optional[str] = None
tools: Optional[str] = None
@ -102,10 +117,11 @@ def get_dataset_list(data_args: "DataArguments") -> List["DatasetAttr"]:
else:
dataset_attr = DatasetAttr("file", dataset_name=dataset_info[name]["file_name"])
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
dataset_attr.set_attr("subset", dataset_info[name])
dataset_attr.set_attr("folder", dataset_info[name])
dataset_attr.set_attr("ranking", dataset_info[name], default=False)
dataset_attr.set_attr("formatting", dataset_info[name], default="alpaca")
dataset_attr.set_attr("num_samples", dataset_info[name])
if "columns" in dataset_info[name]:
column_names = ["system", "tools", "images", "chosen", "rejected", "kto_tag"]

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import TYPE_CHECKING, Callable, Literal, Optional, Tuple
@ -13,8 +27,7 @@ from .processors.unsupervised import preprocess_unsupervised_dataset, print_unsu
if TYPE_CHECKING:
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments
from ..hparams import DataArguments
from .template import Template
@ -23,7 +36,7 @@ if TYPE_CHECKING:
def get_preprocess_and_print_func(
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "kto"],
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],

View File

@ -1,13 +1,26 @@
from typing import TYPE_CHECKING, Any, Dict, List, Optional
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
if TYPE_CHECKING:
from transformers import ProcessorMixin
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..template import Template
@ -16,6 +29,55 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _encode_feedback_example(
prompt: Sequence[Dict[str, str]],
response: Sequence[Dict[str, str]],
kl_response: Sequence[Dict[str, str]],
system: Optional[str],
tools: Optional[str],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
prompt[0]["content"] = template.image_token + prompt[0]["content"]
if response[0]["content"]: # desired example
kto_tag = True
messages = prompt + [response[0]]
else: # undesired example
kto_tag = False
messages = prompt + [response[1]]
if kl_response[0]["content"]:
kl_messages = prompt + [kl_response[0]]
else:
kl_messages = prompt + [kl_response[1]]
prompt_ids, response_ids = template.encode_oneturn(
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
_, kl_response_ids = template.encode_oneturn(
tokenizer, kl_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
if template.efficient_eos:
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
input_ids = prompt_ids + response_ids
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
kl_input_ids = prompt_ids + kl_response_ids
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
def preprocess_feedback_dataset(
examples: Dict[str, List[Any]],
template: "Template",
@ -45,50 +107,17 @@ def preprocess_feedback_dataset(
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
continue
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
if examples["response"][i][0]["content"]: # desired example
kto_tag = True
messages = examples["prompt"][i] + [examples["response"][i][0]]
else: # undesired example
kto_tag = False
messages = examples["prompt"][i] + [examples["response"][i][1]]
if kl_response[i][0]["content"]:
kl_messages = examples["prompt"][i] + [kl_response[i][0]]
else:
kl_messages = examples["prompt"][i] + [kl_response[i][1]]
prompt_ids, response_ids = template.encode_oneturn(
tokenizer,
messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
prompt=examples["prompt"][i],
response=examples["response"][i],
kl_response=kl_response[i],
system=examples["system"][i],
tools=examples["tools"][i],
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
_, kl_response_ids = template.encode_oneturn(
tokenizer,
kl_messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
response_ids += [tokenizer.eos_token_id]
kl_response_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
input_ids = prompt_ids + response_ids
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
kl_input_ids = prompt_ids + kl_response_ids
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)

View File

@ -1,27 +0,0 @@
from typing import TYPE_CHECKING, List, Sequence
from ...extras.packages import is_pillow_available
if is_pillow_available():
from PIL import Image
if TYPE_CHECKING:
from numpy.typing import NDArray
from PIL.Image import Image as ImageObject
from transformers import ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
# process visual inputs (currently only supports a single image)
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
return image_processor(image, return_tensors="pt")["pixel_values"][0] # shape (C, H, W)
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[int]:
# get paligemma token type ids for computing loss
image_seq_length = getattr(processor, "image_seq_length")
return [0] * image_seq_length + [1] * (input_len - image_seq_length)

View File

@ -1,13 +1,26 @@
from typing import TYPE_CHECKING, Any, Dict, List, Optional
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
if TYPE_CHECKING:
from transformers import ProcessorMixin
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..template import Template
@ -16,6 +29,44 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _encode_pairwise_example(
prompt: Sequence[Dict[str, str]],
response: Sequence[Dict[str, str]],
system: Optional[str],
tools: Optional[str],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Tuple[List[int], List[int], List[int], List[int]]:
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
prompt[0]["content"] = template.image_token + prompt[0]["content"]
chosen_messages = prompt + [response[0]]
rejected_messages = prompt + [response[1]]
prompt_ids, chosen_ids = template.encode_oneturn(
tokenizer, chosen_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
_, rejected_ids = template.encode_oneturn(
tokenizer, rejected_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
chosen_input_ids = prompt_ids + chosen_ids
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
rejected_input_ids = prompt_ids + rejected_ids
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
def preprocess_pairwise_dataset(
examples: Dict[str, List[Any]],
template: "Template",
@ -43,40 +94,16 @@ def preprocess_pairwise_dataset(
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
continue
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
prompt_ids, chosen_ids = template.encode_oneturn(
tokenizer,
chosen_messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example(
prompt=examples["prompt"][i],
response=examples["response"][i],
system=examples["system"][i],
tools=examples["tools"][i],
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
_, rejected_ids = template.encode_oneturn(
tokenizer,
rejected_messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
if template.efficient_eos:
chosen_ids += [tokenizer.eos_token_id]
rejected_ids += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
chosen_input_ids = prompt_ids + chosen_ids
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
rejected_input_ids = prompt_ids + rejected_ids
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
model_inputs["chosen_input_ids"].append(chosen_input_ids)
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
model_inputs["chosen_labels"].append(chosen_labels)

View File

@ -1,9 +1,26 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from itertools import chain
from typing import TYPE_CHECKING, Any, Dict, List
if TYPE_CHECKING:
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import PreTrainedTokenizer
from ...hparams import DataArguments
@ -12,13 +29,14 @@ def preprocess_pretrain_dataset(
examples: Dict[str, List[Any]], tokenizer: "PreTrainedTokenizer", data_args: "DataArguments"
) -> Dict[str, List[List[int]]]:
# build grouped texts with format `X1 X2 X3 ...` if packing is enabled
text_examples = [messages[0]["content"] + tokenizer.eos_token for messages in examples["prompt"]]
eos_token = "<|end_of_text|>" if data_args.template == "llama3" else tokenizer.eos_token
text_examples = [messages[0]["content"] + eos_token for messages in examples["prompt"]]
if not data_args.packing:
if data_args.template == "gemma":
text_examples = [tokenizer.bos_token + example for example in text_examples]
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len)
result = tokenizer(text_examples, add_special_tokens=False, max_length=data_args.cutoff_len, truncation=True)
else:
tokenized_examples = tokenizer(text_examples, add_special_tokens=False)
concatenated_examples = {k: list(chain(*tokenized_examples[k])) for k in tokenized_examples.keys()}

View File

@ -0,0 +1,78 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import bisect
from typing import TYPE_CHECKING, List, Sequence
from ...extras.packages import is_pillow_available
if is_pillow_available():
from PIL import Image
if TYPE_CHECKING:
from numpy.typing import NDArray
from PIL.Image import Image as ImageObject
from transformers import ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
r"""
Finds the index of largest number that fits into the knapsack with the given capacity.
"""
index = bisect.bisect(numbers, capacity)
return -1 if index == 0 else (index - 1)
def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
r"""
An efficient greedy algorithm with binary search for the knapsack problem.
"""
numbers.sort() # sort numbers in ascending order for binary search
knapsacks = []
while numbers:
current_knapsack = []
remaining_capacity = capacity
while True:
index = search_for_fit(numbers, remaining_capacity)
if index == -1:
break # no more numbers fit in this knapsack
remaining_capacity -= numbers[index] # update the remaining capacity
current_knapsack.append(numbers.pop(index)) # add the number to knapsack
knapsacks.append(current_knapsack)
return knapsacks
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
r"""
Processes visual inputs. (currently only supports a single image)
"""
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
return image_processor(image, return_tensors="pt")["pixel_values"][0] # shape (C, H, W)
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[int]:
r"""
Gets paligemma token type ids for computing loss.
"""
image_seq_length = getattr(processor, "image_seq_length")
return [0] * image_seq_length + [1] * (input_len - image_seq_length)

View File

@ -1,13 +1,27 @@
from typing import TYPE_CHECKING, Any, Dict, List, Optional
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack
if TYPE_CHECKING:
from transformers import ProcessorMixin
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..template import Template
@ -16,6 +30,48 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _encode_supervised_example(
prompt: Sequence[Dict[str, str]],
response: Sequence[Dict[str, str]],
system: Optional[str],
tools: Optional[str],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Tuple[List[int], List[int]]:
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
prompt[0]["content"] = template.image_token + prompt[0]["content"]
messages = prompt + response
input_ids, labels = [], []
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
input_ids += [image_token_id] * getattr(processor, "image_seq_length")
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")
encoded_pairs = template.encode_multiturn(
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
return input_ids, labels
def preprocess_supervised_dataset(
examples: Dict[str, List[Any]],
template: "Template",
@ -36,41 +92,16 @@ def preprocess_supervised_dataset(
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
continue
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
messages = examples["prompt"][i] + examples["response"][i]
input_ids, labels = [], []
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
input_ids += [image_token_id] * getattr(processor, "image_seq_length")
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")
for turn_idx, (source_ids, target_ids) in enumerate(
template.encode_multiturn(
tokenizer,
messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
)
):
if data_args.train_on_prompt:
source_mask = source_ids
elif turn_idx != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids += source_ids + target_ids
labels += source_mask + target_ids
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
input_ids, labels = _encode_supervised_example(
prompt=examples["prompt"][i],
response=examples["response"][i],
system=examples["system"][i],
tools=examples["tools"][i],
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)
@ -90,41 +121,55 @@ def preprocess_packed_supervised_dataset(
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
input_ids, labels = [], []
valid_num = 0
batch_input_ids, batch_labels = [], []
lengths = []
length2indexes = defaultdict(list)
for i in range(len(examples["prompt"])):
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
continue
messages = examples["prompt"][i] + examples["response"][i]
for source_ids, target_ids in template.encode_multiturn(
tokenizer, messages, examples["system"][i], examples["tools"][i]
):
if data_args.train_on_prompt:
source_mask = source_ids
elif len(input_ids) != 0 and template.efficient_eos:
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
else:
source_mask = [IGNORE_INDEX] * len(source_ids)
input_ids, labels = _encode_supervised_example(
prompt=examples["prompt"][i],
response=examples["response"][i],
system=examples["system"][i],
tools=examples["tools"][i],
template=template,
tokenizer=tokenizer,
processor=None,
data_args=data_args,
)
length = len(input_ids)
if length > data_args.cutoff_len:
logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len))
else:
lengths.append(length)
length2indexes[length].append(valid_num)
batch_input_ids.append(input_ids)
batch_labels.append(labels)
valid_num += 1
input_ids += source_ids + target_ids
labels += source_mask + target_ids
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len)
for knapsack in knapsacks:
packed_input_ids, packed_labels = [], []
for length in knapsack:
index = length2indexes[length].pop()
packed_input_ids += batch_input_ids[index]
packed_labels += batch_labels[index]
if template.efficient_eos:
input_ids += [tokenizer.eos_token_id]
labels += [tokenizer.eos_token_id]
if len(packed_input_ids) < data_args.cutoff_len:
pad_length = data_args.cutoff_len - len(packed_input_ids)
packed_input_ids += [tokenizer.pad_token_id] * pad_length
packed_labels += [IGNORE_INDEX] * pad_length
total_length = len(input_ids)
block_size = data_args.cutoff_len
# we drop the small remainder, and if the total_length < block_size, we exclude this batch
total_length = (total_length // block_size) * block_size
# split by chunks of cutoff_len
for i in range(0, total_length, block_size):
if not all(label == IGNORE_INDEX for label in labels[i : i + block_size]):
model_inputs["input_ids"].append(input_ids[i : i + block_size])
model_inputs["attention_mask"].append([1] * block_size)
model_inputs["labels"].append(labels[i : i + block_size])
if len(packed_input_ids) != data_args.cutoff_len:
raise ValueError("The length of packed example should be identical to the cutoff length.")
model_inputs["input_ids"].append(packed_input_ids)
model_inputs["attention_mask"].append([1] * data_args.cutoff_len)
model_inputs["labels"].append(packed_labels)
return model_inputs

View File

@ -1,13 +1,26 @@
from typing import TYPE_CHECKING, Any, Dict, List, Optional
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
from ...extras.logging import get_logger
from ..utils import Role
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
from ..data_utils import Role
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
if TYPE_CHECKING:
from transformers import ProcessorMixin
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ..template import Template
@ -16,6 +29,37 @@ if TYPE_CHECKING:
logger = get_logger(__name__)
def _encode_unsupervised_example(
prompt: Sequence[Dict[str, str]],
response: Sequence[Dict[str, str]],
system: Optional[str],
tools: Optional[str],
template: "Template",
tokenizer: "PreTrainedTokenizer",
processor: Optional["ProcessorMixin"],
data_args: "DataArguments",
) -> Tuple[List[int], List[int]]:
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
prompt[0]["content"] = template.image_token + prompt[0]["content"]
if len(response) == 1:
messages = prompt + response
else:
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
input_ids, labels = template.encode_oneturn(
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
return input_ids, labels
def preprocess_unsupervised_dataset(
examples: Dict[str, List[Any]],
template: "Template",
@ -35,30 +79,16 @@ def preprocess_unsupervised_dataset(
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
continue
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
if len(examples["response"][i]) == 1:
messages = examples["prompt"][i] + examples["response"][i]
else:
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT.value, "content": ""}]
input_ids, labels = template.encode_oneturn(
tokenizer,
messages,
examples["system"][i],
examples["tools"][i],
data_args.cutoff_len,
data_args.reserved_label_len,
input_ids, labels = _encode_unsupervised_example(
prompt=examples["prompt"][i],
response=examples["response"][i],
system=examples["system"][i],
tools=examples["tools"][i],
template=template,
tokenizer=tokenizer,
processor=processor,
data_args=data_args,
)
if template.efficient_eos:
labels += [tokenizer.eos_token_id]
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
model_inputs["input_ids"].append(input_ids)
model_inputs["attention_mask"].append([1] * len(input_ids))
model_inputs["labels"].append(labels)

View File

@ -1,9 +1,23 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, Union
from ..extras.logging import get_logger
from .data_utils import Role, infer_max_len
from .formatter import EmptyFormatter, FunctionFormatter, StringFormatter, ToolFormatter
from .utils import Role, infer_max_len
if TYPE_CHECKING:
@ -196,7 +210,7 @@ class Llama2Template(Template):
return self._make_pairs(encoded_messages, cutoff_len, reserved_label_len)
templates: Dict[str, Template] = {}
TEMPLATES: Dict[str, Template] = {}
def _register_template(
@ -248,7 +262,7 @@ def _register_template(
default_function_formatter = FunctionFormatter(slots=["Action: {{name}}\nAction Input: {{arguments}}"] + eos_slots)
default_tool_formatter = ToolFormatter(tool_format="default")
default_separator_formatter = EmptyFormatter()
templates[name] = template_class(
TEMPLATES[name] = template_class(
format_user=format_user or default_user_formatter,
format_assistant=format_assistant or default_assistant_formatter,
format_system=format_system or default_user_formatter,
@ -348,9 +362,9 @@ def get_template_and_fix_tokenizer(
name: Optional[str] = None,
) -> Template:
if name is None:
template = templates["empty"] # placeholder
template = TEMPLATES["empty"] # placeholder
else:
template = templates.get(name, None)
template = TEMPLATES.get(name, None)
if template is None:
raise ValueError("Template {} does not exist.".format(name))
@ -544,8 +558,13 @@ _register_template(
)
]
),
format_system=EmptyFormatter(slots=[{"bos_token"}]),
force_system=True,
format_system=StringFormatter(
slots=[{"bos_token"}, "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>{{content}}<|END_OF_TURN_TOKEN|>"]
),
default_system=(
"You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users "
"by providing thorough responses. You are trained by Cohere."
),
)
@ -653,6 +672,19 @@ _register_template(
)
_register_template(
name="glm4",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>"]),
format_assistant=StringFormatter(slots=["\n{{content}}"]),
format_system=StringFormatter(slots=["[gMASK]<sop>{{content}}"]),
format_function=FunctionFormatter(slots=["{{name}}\n{{arguments}}"]),
format_observation=StringFormatter(slots=["<|observation|>\n{{content}}<|assistant|>"]),
stop_words=["<|user|>", "<|observation|>"],
efficient_eos=True,
force_system=True,
)
_register_template(
name="intern",
format_user=StringFormatter(slots=["<|User|>:{{content}}", {"token": "<eoh>"}, "\n<|Bot|>:"]),
@ -682,17 +714,8 @@ _register_template(
_register_template(
name="llama2",
format_user=StringFormatter(slots=[{"bos_token"}, "[INST] {{content}} [/INST]"]),
format_assistant=StringFormatter(slots=[" {{content}} ", {"eos_token"}]),
format_system=StringFormatter(slots=["<<SYS>>\n{{content}}\n<</SYS>>\n\n"]),
default_system=(
"You are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information."
),
)
@ -742,7 +765,6 @@ _register_template(
_register_template(
name="olmo",
format_user=StringFormatter(slots=["<|user|>\n{{content}}<|assistant|>\n"]),
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
format_system=StringFormatter(slots=[{"eos_token"}, "{{content}}"]),
force_system=True,
)
@ -751,12 +773,28 @@ _register_template(
_register_template(
name="openchat",
format_user=StringFormatter(slots=["GPT4 Correct User: {{content}}", {"eos_token"}, "GPT4 Correct Assistant:"]),
format_assistant=StringFormatter(slots=["{{content}}", {"eos_token"}]),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
force_system=True,
)
_register_template(
name="openchat-3.6",
format_user=StringFormatter(
slots=[
(
"<|start_header_id|>GPT4 Correct User<|end_header_id|>\n\n{{content}}<|eot_id|>"
"<|start_header_id|>GPT4 Correct Assistant<|end_header_id|>\n\n"
)
]
),
format_system=StringFormatter(slots=[{"bos_token"}, "{{content}}"]),
stop_words=["<|eot_id|>"],
replace_eos=True,
force_system=True,
)
_register_template(
name="orion",
format_user=StringFormatter(slots=["Human: {{content}}\n\nAssistant: ", {"eos_token"}]),
@ -807,6 +845,15 @@ _register_template(
)
_register_template(
name="telechat",
format_user=StringFormatter(slots=["<_user>{{content}}<_bot>"]),
format_system=StringFormatter(slots=["<_system>{{content}}<_end>"]),
stop_words=["<_end>"],
replace_eos=True,
)
_register_template(
name="vicuna",
format_user=StringFormatter(slots=["USER: {{content}} ASSISTANT:"]),
@ -857,6 +904,7 @@ _register_template(
_register_template(
name="yi",
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
format_separator=EmptyFormatter(slots=["\n"]),
stop_words=["<|im_end|>"],
replace_eos=True,

View File

@ -1,4 +1,41 @@
# Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py
# Copyright 2024 the LlamaFactory team.
#
# This code is inspired by the Dan's test library.
# https://github.com/hendrycks/test/blob/master/evaluate_flan.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# MIT License
#
# Copyright (c) 2020 Dan Hendrycks
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import inspect
import json
@ -26,9 +63,7 @@ class Evaluator:
self.template = get_template_and_fix_tokenizer(self.tokenizer, self.data_args.template)
self.model = load_model(self.tokenizer, self.model_args, finetuning_args)
self.eval_template = get_eval_template(self.eval_args.lang)
self.choice_inputs = [
self.tokenizer.encode(self.eval_template.prefix + ch, add_special_tokens=False)[-1] for ch in CHOICES
]
self.choice_inputs = [self.tokenizer.encode(ch, add_special_tokens=False)[-1] for ch in CHOICES]
@torch.inference_mode()
def batch_inference(self, batch_input: Dict[str, torch.Tensor]) -> List[str]:

View File

@ -1,3 +1,17 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Dict, List, Sequence, Tuple
@ -10,7 +24,6 @@ class EvalTemplate:
system: str
choice: str
answer: str
prefix: str
def _parse_example(self, example: Dict[str, str]) -> Tuple[str, str]:
r"""
@ -42,8 +55,8 @@ class EvalTemplate:
eval_templates: Dict[str, "EvalTemplate"] = {}
def _register_eval_template(name: str, system: str, choice: str, answer: str, prefix: str) -> None:
eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer, prefix=prefix)
def _register_eval_template(name: str, system: str, choice: str, answer: str) -> None:
eval_templates[name] = EvalTemplate(system=system, choice=choice, answer=answer)
def get_eval_template(name: str) -> "EvalTemplate":
@ -56,8 +69,7 @@ _register_eval_template(
name="en",
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
choice="\n{choice}. {content}",
answer="\nAnswer: ",
prefix=" ",
answer="\nAnswer:",
)
@ -66,5 +78,4 @@ _register_eval_template(
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
choice="\n{choice}. {content}",
answer="\n答案:",
prefix=" ",
)

Some files were not shown because too many files have changed in this diff Show More