fix tokenizer #417

This commit is contained in:
hiyouga 2023-08-08 23:59:41 +08:00
parent caa0eda27d
commit eecc4b2131
4 changed files with 24 additions and 17 deletions

View File

@ -5,7 +5,7 @@ from threading import Thread
from transformers import PreTrainedModel, TextIteratorStreamer
from llmtuner.extras.misc import dispatch_model, get_logits_processor, get_stopping_criteria
from llmtuner.extras.template import get_template
from llmtuner.extras.template import get_template_and_fix_tokenizer
from llmtuner.tuner.core import get_infer_args, load_model_and_tokenizer
@ -16,7 +16,7 @@ class ChatModel:
self.model, self.tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
self.model = dispatch_model(self.model)
self.model = self.model.eval() # change to eval mode
self.template = get_template(data_args.template)
self.template = get_template_and_fix_tokenizer(data_args.template, self.tokenizer)
self.source_prefix = data_args.source_prefix
self.stop_ids = self.tokenizer.convert_tokens_to_ids(self.template.stop_words)
self.tokenizer.add_special_tokens(dict(additional_special_tokens=self.template.stop_words))

View File

@ -2,7 +2,7 @@ from typing import TYPE_CHECKING, Any, Dict, Generator, List, Literal
from itertools import chain
from llmtuner.extras.constants import IGNORE_INDEX
from llmtuner.extras.template import get_template
from llmtuner.extras.template import get_template_and_fix_tokenizer
if TYPE_CHECKING:
from datasets import Dataset
@ -19,7 +19,7 @@ def preprocess_dataset(
stage: Literal["pt", "sft", "rm", "ppo"]
) -> "Dataset":
column_names = list(dataset.column_names)
template = get_template(data_args.template)
template = get_template_and_fix_tokenizer(data_args.template, tokenizer)
def construct_example(examples: Dict[str, List[Any]]) -> Generator[Any, None, None]:
for i in range(len(examples["prompt"])):
@ -119,10 +119,9 @@ def preprocess_dataset(
print("input_ids:\n{}".format(example["input_ids"]))
print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False)))
print("label_ids:\n{}".format(example["labels"]))
print("labels:\n{}".format(''.join([
tokenizer.decode(d, skip_special_tokens=False)
if d != IGNORE_INDEX else '-100' for d in example["labels"]
])))
print("labels:\n{}".format(tokenizer.decode([
token_id if token_id != IGNORE_INDEX else tokenizer.pad_token_id for token_id in example["labels"]
], skip_special_tokens=False)))
def print_pairwise_dataset_example(example):
print("accept_ids:\n{}".format(example["accept_ids"]))

View File

@ -67,15 +67,15 @@ class Template:
self,
tokenizer: "PreTrainedTokenizer"
) -> Tuple[List[int], List[int]]:
if tokenizer.bos_token_id and getattr(tokenizer, "add_bos_token", False):
if tokenizer.bos_token_id and getattr(tokenizer, "add_bos_token", True):
bos_ids = [tokenizer.bos_token_id]
else: # bos token is optional
bos_ids = []
else:
bos_ids = [] # bos token is optional
if tokenizer.eos_token_id and getattr(tokenizer, "add_eos_token", False):
if tokenizer.eos_token_id and getattr(tokenizer, "add_eos_token", True):
eos_ids = [tokenizer.eos_token_id]
else: # use the first stop word as the eos token
eos_ids = [tokenizer.convert_tokens_to_ids(self.stop_words[0])]
else:
raise ValueError("EOS token is required.")
return bos_ids, eos_ids
@ -172,9 +172,19 @@ def register_template(
)
def get_template(name: str) -> Template:
def get_template_and_fix_tokenizer(
name: str,
tokenizer: "PreTrainedTokenizer"
) -> Template:
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
if tokenizer.eos_token_id is None and len(template.stop_words): # inplace method
tokenizer.eos_token = template.stop_words[0]
if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None:
tokenizer.pad_token = tokenizer.eos_token
return template

View File

@ -68,8 +68,6 @@ def load_model_and_tokenizer(
padding_side=model_args.padding_side,
**config_kwargs
)
if tokenizer.pad_token_id is None and tokenizer.eos_token_id is not None: # add pad token
tokenizer.pad_token = tokenizer.eos_token
if model_args.checkpoint_dir is not None and finetuning_args.finetuning_type == "full":
model_to_load = model_args.checkpoint_dir[0]