diff --git a/src/llmtuner/eval/evaluator.py b/src/llmtuner/eval/evaluator.py index f0d28afb..0bf4c3f4 100644 --- a/src/llmtuner/eval/evaluator.py +++ b/src/llmtuner/eval/evaluator.py @@ -64,7 +64,8 @@ class Evaluator: name=subject, cache_dir=self.model_args.cache_dir, download_mode=self.eval_args.download_mode, - token=self.model_args.hf_hub_token + token=self.model_args.hf_hub_token, + trust_remote_code=True ) pbar.set_postfix_str(categorys[subject]["name"]) inputs, outputs, labels = [], [], [] diff --git a/tests/llamafy_internlm2.py b/tests/llamafy_internlm2.py new file mode 100644 index 00000000..8661b657 --- /dev/null +++ b/tests/llamafy_internlm2.py @@ -0,0 +1,121 @@ +# coding=utf-8 +# Converts the InternLM2 model in the same format as LLaMA2. +# Usage: python llamafy_internlm2.py --input_dir input --output_dir output --shard_size 10GB + +import os +import fire +import json +import torch +from tqdm import tqdm +from collections import OrderedDict +from safetensors.torch import save_file +from transformers.modeling_utils import ( + shard_checkpoint, + SAFE_WEIGHTS_NAME, + SAFE_WEIGHTS_INDEX_NAME, + WEIGHTS_NAME, + WEIGHTS_INDEX_NAME +) +from typing import Any, Dict, Optional + + +CONFIG_NAME = "config.json" + + +def save_weight( + input_dir: str, + output_dir: str, + shard_size: str, + save_safetensors: bool +): + with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: + internlm2_config_dict: Dict[str, Any] = json.load(f) + + internlm2_state_dict: Dict[str, torch.Tensor] = OrderedDict() + for filepath in os.listdir(input_dir): + if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): + shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") + internlm2_state_dict.update(shard_weight) + + llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() + for key, value in tqdm(internlm2_state_dict.items(), desc="Convert format"): + if "output" in key: + llama2_state_dict["lm_head"] = value + elif "tok_embeddings" in key: + llama2_state_dict["embed_tokens"] = value + elif "attention_norm" in key: + llama2_state_dict[key.replace("attention_norm", "input_layernorm")] = value + elif "wqkv" in key: + proj_size = value.size(0) // 3 + num_q_heads = internlm2_config_dict["num_attention_heads"] + num_kv_heads = internlm2_config_dict["num_key_value_heads"] + q_size = proj_size // (num_q_heads + num_kv_heads) * num_q_heads + kv_size = proj_size // (num_q_heads + num_kv_heads) * num_kv_heads + llama2_state_dict[key.replace("attention.wqkv", "self_attn.q_proj")] = value[:q_size, ...] + llama2_state_dict[key.replace("attention.wqkv", "self_attn.k_proj")] = value[q_size:q_size+kv_size, ...] + llama2_state_dict[key.replace("attention.wqkv", "self_attn.v_proj")] = value[q_size+kv_size:, ...] + elif "wo" in key: + llama2_state_dict[key.replace("attention.wo", "self_attn.o_proj")] = value + elif "ffn_norm" in key: + llama2_state_dict[key.replace("ffn_norm", "post_attention_layernorm")] = value + elif "w1" in key: + llama2_state_dict[key.replace("feed_forward.w1", "mlp.gate_proj")] = value + elif "w2" in key: + llama2_state_dict[key.replace("feed_forward.w2", "mlp.down_proj")] = value + elif "w3" in key: + llama2_state_dict[key.replace("feed_forward.w3", "mlp.up_proj")] = value + else: + raise KeyError("Unable to process key {}".format(key)) + + weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME + shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name) + + for shard_file, shard in tqdm(shards.items(), desc="Save weights"): + if save_safetensors: + save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) + else: + torch.save(shard, os.path.join(output_dir, shard_file)) + + if index is None: + print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME))) + else: + index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME + with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: + json.dump(index, f, indent=2, sort_keys=True) + print("Model weights saved in {}".format(output_dir)) + + +def save_config( + input_dir: str, + output_dir: str +): + with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: + llama2_config_dict: Dict[str, Any] = json.load(f) + + llama2_config_dict["architectures"] = ["LlamaForCausalLM"] + llama2_config_dict.pop("auto_map", None) + llama2_config_dict.pop("bias", None) + llama2_config_dict["model_type"] = "llama" + + with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: + json.dump(llama2_config_dict, f, indent=2) + print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) + + +def llamafy_internlm2( + input_dir: str, + output_dir: str, + shard_size: str, + save_safetensors: Optional[bool] = False +): + try: + os.makedirs(output_dir, exist_ok=False) + except Exception as e: + raise print("Output dir already exists", e) + + save_weight(input_dir, output_dir, shard_size, save_safetensors) + save_config(input_dir, output_dir) + + +if __name__ == "__main__": + fire.Fire(llamafy_internlm2)