add: add batch run scripts
This commit is contained in:
parent
a0569cadda
commit
f5b14a46be
|
@ -0,0 +1,56 @@
|
|||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Llama2-7B/llama2_lora_sft_1.yaml > train results/lora_sft/Llama2-7B/llama2_lora_sft_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Llama2-7B/llama2_lora_sft_2.yaml > train results/lora_sft/Llama2-7B/llama2_lora_sft_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Llama2-7B/llama2_lora_sft_3.yaml > train results/lora_sft/Llama2-7B/llama2_lora_sft_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Llama2-7B/llama2_lora_sft_1_single.yaml > train results/lora_sft/Llama2-7B/llama2_lora_sft_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Llama2-7B/llama2_lora_sft_2_single.yaml > train results/lora_sft/Llama2-7B/llama2_lora_sft_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Llama2-7B/llama2_lora_sft_3_single.yaml > train results/lora_sft/Llama2-7B/llama2_lora_sft_3_single.log
|
||||
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Llama2-7B/llama2_predict_1.yaml > train results/inference/Llama2-7B/llama2_predict_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Llama2-7B/llama2_predict_2.yaml > train results/inference/Llama2-7B/llama2_predict_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Llama2-7B/llama2_predict_3.yaml > train results/inference/Llama2-7B/llama2_predict_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Llama2-7B/llama2_predict_1_single.yaml > train results/inference/Llama2-7B/llama2_predict_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Llama2-7B/llama2_predict_2_single.yaml > train results/inference/Llama2-7B/llama2_predict_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Llama2-7B/llama2_predict_3_single.yaml > train results/inference/Llama2-7B/llama2_predict_3_single.log
|
||||
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_1.yaml > train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_2.yaml > train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_3.yaml > train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_1_single.yaml > train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_2_single.yaml > train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_3_single.yaml > train results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_3_single.log
|
||||
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_1.yaml > train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_2.yaml > train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_3.yaml > train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_1_single.yaml > train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_2_single.yaml > train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_3_single.yaml > train results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_3_single.log
|
||||
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Qwen-7B/Qwen_lora_sft_1.yaml > train results/lora_sft/Qwen-7B/Qwen_lora_sft_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Qwen-7B/Qwen_lora_sft_2.yaml > train results/lora_sft/Qwen-7B/Qwen_lora_sft_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/lora_sft/Qwen-7B/Qwen_lora_sft_3.yaml > train results/lora_sft/Qwen-7B/Qwen_lora_sft_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Qwen-7B/Qwen_lora_sft_1_single.yaml > train results/lora_sft/Qwen-7B/Qwen_lora_sft_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Qwen-7B/Qwen_lora_sft_2_single.yaml > train results/lora_sft/Qwen-7B/Qwen_lora_sft_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/lora_sft/Qwen-7B/Qwen_lora_sft_3_single.yaml > train results/lora_sft/Qwen-7B/Qwen_lora_sft_3_single.log
|
||||
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Qwen-7B/Qwen_predict_1.yaml > train results/inference/Qwen-7B/Qwen_predict_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Qwen-7B/Qwen_predict_2.yaml > train results/inference/Qwen-7B/Qwen_predict_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Qwen-7B/Qwen_predict_3.yaml > train results/inference/Qwen-7B/Qwen_predict_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Qwen-7B/Qwen_predict_1_single.yaml > train results/inference/Qwen-7B/Qwen_predict_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Qwen-7B/Qwen_predict_2_single.yaml > train results/inference/Qwen-7B/Qwen_predict_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Qwen-7B/Qwen_predict_3_single.yaml > train results/inference/Qwen-7B/Qwen_predict_3_single.log
|
||||
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/ChatGLM2-6B/ChatGLM2_predict_1.yaml > train results/inference/ChatGLM2-6B/ChatGLM2_predict_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/ChatGLM2-6B/ChatGLM2_predict_2.yaml > train results/inference/ChatGLM2-6B/ChatGLM2_predict_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/ChatGLM2-6B/ChatGLM2_predict_3.yaml > train results/inference/ChatGLM2-6B/ChatGLM2_predict_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/ChatGLM2-6B/ChatGLM2_predict_1_single.yaml > train results/inference/ChatGLM2-6B/ChatGLM2_predict_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/ChatGLM2-6B/ChatGLM2_predict_2_single.yaml > train results/inference/ChatGLM2-6B/ChatGLM2_predict_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/ChatGLM2-6B/ChatGLM2_predict_3_single.yaml > train results/inference/ChatGLM2-6B/ChatGLM2_predict_3_single.log
|
||||
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Baichuan2-7B/Baichuan2_predict_1.yaml > train results/inference/Baichuan2-7B/Baichuan2_predict_1.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Baichuan2-7B/Baichuan2_predict_2.yaml > train results/inference/Baichuan2-7B/Baichuan2_predict_2.log
|
||||
FORCE_TORCHRUN=1 llamafactory-cli train results/inference/Baichuan2-7B/Baichuan2_predict_3.yaml > train results/inference/Baichuan2-7B/Baichuan2_predict_3.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Baichuan2-7B/Baichuan2_predict_1_single.yaml > train results/inference/Baichuan2-7B/Baichuan2_predict_1_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Baichuan2-7B/Baichuan2_predict_2_single.yaml > train results/inference/Baichuan2-7B/Baichuan2_predict_2_single.log
|
||||
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train results/inference/Baichuan2-7B/Baichuan2_predict_3_single.yaml > train results/inference/Baichuan2-7B/Baichuan2_predict_3_single.log
|
||||
|
|
@ -0,0 +1,39 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: full
|
||||
deepspeed: examples/deepspeed/ds_z3_config.json
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/full/Llama2-7B/llama2_full_1
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-5
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
ddp_timeout: 180000000
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Baichuan2-7B/Baichuan2_predict_1
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Baichuan2-7B/Baichuan2_predict_1_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Baichuan2-7B/Baichuan2_predict_2
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Baichuan2-7B/Baichuan2_predict_2_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Baichuan2-7B/Baichuan2_predict_3
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Baichuan2-7B/Baichuan2_predict_3_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/ChatGLM2-6B/ChatGLM2_predict_1
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/ChatGLM2-6B/ChatGLM2_predict_1_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/ChatGLM2-6B/ChatGLM2_predict_2
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/ChatGLM2-6B/ChatGLM2_predict_2_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/ChatGLM2-6B/ChatGLM2_predict_3
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/ChatGLM2-6B/ChatGLM2_predict_3_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -13,7 +13,7 @@ overwrite_cache: true
|
|||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Llama2-7B/Llama2-7B_inference_08_15_11_06
|
||||
output_dir: ./results/inference/Llama2-7B/llama2_predict_1
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Llama2-7B/llama2_predict_1_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Llama2-7B/llama2_predict_2
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Llama2-7B/llama2_predict_2_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Llama2-7B/llama2_predict_3
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Llama2-7B/llama2_predict_3_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Qwen-7B/Qwen_predict_1
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Qwen-7B/Qwen_predict_1_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Qwen-7B/Qwen_predict_2
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Qwen-7B/Qwen_predict_2_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Qwen-7B/Qwen_predict_3
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,22 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
do_predict: true
|
||||
|
||||
### dataset
|
||||
eval_dataset: alpaca_gpt4_zh
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 50
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/inference/Qwen-7B/Qwen_predict_3_single
|
||||
overwrite_output_dir: true
|
||||
|
||||
### eval
|
||||
per_device_eval_batch_size: 2
|
||||
predict_with_generate: true
|
||||
ddp_timeout: 180000000
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_1
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_1_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_2
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_2_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_3
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: baichuan-inc/baichuan-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: baichuan
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Baichuan2-7B/Baichuan2_lora_sft_3_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_1
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_1_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_2
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_2_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_3
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: ZhipuAI/chatglm2-6b
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: chatglm2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/ChatGLM2-6B/ChatGLM2_lora_sft_3_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -16,7 +16,7 @@ overwrite_cache: true
|
|||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Llama2-7B/Llama2-7B_lora_sft_08_15_11_01
|
||||
output_dir: ./results/lora_sft/Llama2-7B/llama2_lora_sft_1
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
|
@ -29,8 +29,9 @@ learning_rate: 1.0e-4
|
|||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
bf16: true
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Llama2-7B/llama2_lora_sft_1_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Llama2-7B/llama2_lora_sft_2
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Llama2-7B/llama2_lora_sft_2_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Llama2-7B/llama2_lora_sft_3
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: modelscope/Llama-2-7b-ms
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: llama2
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Llama2-7B/llama2_lora_sft_3_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Qwen-7B/Qwen_lora_sft_1
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Qwen-7B/Qwen_lora_sft_1_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Qwen-7B/Qwen_lora_sft_2
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Qwen-7B/Qwen_lora_sft_2_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Qwen-7B/Qwen_lora_sft_3
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
|
@ -0,0 +1,40 @@
|
|||
### model
|
||||
model_name_or_path: qwen/Qwen-7B
|
||||
|
||||
### method
|
||||
stage: sft
|
||||
do_train: true
|
||||
finetuning_type: lora
|
||||
lora_target: all
|
||||
|
||||
### dataset
|
||||
dataset: belle_1m
|
||||
template: qwen
|
||||
cutoff_len: 1024
|
||||
max_samples: 10000
|
||||
overwrite_cache: true
|
||||
preprocessing_num_workers: 16
|
||||
|
||||
### output
|
||||
output_dir: ./results/lora_sft/Qwen-7B/Qwen_lora_sft_3_single
|
||||
logging_steps: 3
|
||||
save_steps: 100
|
||||
plot_loss: true
|
||||
overwrite_output_dir: true
|
||||
|
||||
### train
|
||||
per_device_train_batch_size: 2
|
||||
gradient_accumulation_steps: 8
|
||||
learning_rate: 1.0e-4
|
||||
num_train_epochs: 10.0
|
||||
lr_scheduler_type: cosine
|
||||
warmup_ratio: 0.1
|
||||
fp16: true
|
||||
ddp_timeout: 180000000
|
||||
max_steps: 500
|
||||
|
||||
### eval
|
||||
val_size: 0.1
|
||||
per_device_eval_batch_size: 2
|
||||
eval_strategy: steps
|
||||
eval_steps: 500
|
Loading…
Reference in New Issue