# coding=utf-8 # Copyright 2024 Microsoft Corporation and the LlamaFactory team. # # This code is inspired by the Microsoft's DeepSpeed library. # https://www.deepspeed.ai/tutorials/flops-profiler/ # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fire import torch from deepspeed.accelerator import get_accelerator # type: ignore from deepspeed.profiling.flops_profiler import get_model_profile # type: ignore from llamafactory.chat import ChatModel def calculate_flops( model_name_or_path: str, batch_size: int = 1, seq_length: int = 256, flash_attn: str = "auto", ): r""" Calculates the flops of pre-trained models. Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512 """ with get_accelerator().device(0): chat_model = ChatModel(dict(model_name_or_path=model_name_or_path, template="empty", flash_attn=flash_attn)) fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.engine.model.device) input_dict = {"input_ids": fake_input, "labels": fake_input.clone()} flops, macs, params = get_model_profile( chat_model.engine.model, kwargs=input_dict, print_profile=True, detailed=True ) print("FLOPs:", flops) print("MACs:", macs) print("Params:", params) if __name__ == "__main__": fire.Fire(calculate_flops)