# Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import TYPE_CHECKING, List, Sequence import pytest from transformers import AutoTokenizer from llamafactory.data import get_template_and_fix_tokenizer if TYPE_CHECKING: from transformers import PreTrainedTokenizer HF_TOKEN = os.environ.get("HF_TOKEN", None) TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") MESSAGES = [ {"role": "user", "content": "How are you"}, {"role": "assistant", "content": "I am fine!"}, {"role": "user", "content": "你好"}, {"role": "assistant", "content": "很高兴认识你!"}, ] def _check_tokenization( tokenizer: "PreTrainedTokenizer", batch_input_ids: Sequence[Sequence[int]], batch_text: Sequence[str] ) -> None: for input_ids, text in zip(batch_input_ids, batch_text): assert input_ids == tokenizer.encode(text, add_special_tokens=False) assert tokenizer.decode(input_ids) == text def _check_single_template( model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str, use_fast: bool ) -> List[str]: tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN) content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False) content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True) template = get_template_and_fix_tokenizer(tokenizer, name=template_name) prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) assert content_str == prompt_str + answer_str + extra_str assert content_ids == prompt_ids + answer_ids + tokenizer.encode(extra_str, add_special_tokens=False) _check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) return content_ids def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str = "") -> None: """ Checks template for both the slow tokenizer and the fast tokenizer. Args: model_id: the model id on hugging face hub. template_name: the template name. prompt_str: the string corresponding to the prompt part. answer_str: the string corresponding to the answer part. extra_str: the extra string in the jinja template of the original tokenizer. """ slow_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=False) fast_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=True) assert slow_ids == fast_ids @pytest.mark.parametrize("use_fast", [True, False]) def test_encode_oneturn(use_fast: bool): tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) template = get_template_and_fix_tokenizer(tokenizer, name="llama3") prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES) prompt_str = ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) answer_str = "很高兴认识你!<|eot_id|>" _check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str)) @pytest.mark.parametrize("use_fast", [True, False]) def test_encode_multiturn(use_fast: bool): tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) template = get_template_and_fix_tokenizer(tokenizer, name="llama3") encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES) prompt_str_1 = ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) answer_str_1 = "I am fine!<|eot_id|>" prompt_str_2 = ( "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) answer_str_2 = "很高兴认识你!<|eot_id|>" _check_tokenization( tokenizer, (encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]), (prompt_str_1, answer_str_1, prompt_str_2, answer_str_2), ) @pytest.mark.parametrize("use_fast", [True, False]) def test_jinja_template(use_fast: bool): tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast) get_template_and_fix_tokenizer(tokenizer, name="llama3") assert tokenizer.chat_template != ref_tokenizer.chat_template assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES) @pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") def test_gemma_template(): prompt_str = ( "user\nHow are you\n" "model\nI am fine!\n" "user\n你好\n" "model\n" ) answer_str = "很高兴认识你!" _check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, extra_str="\n") @pytest.mark.skipif(not HF_TOKEN, reason="Gated model.") def test_llama3_template(): prompt_str = ( "<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>" "<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>" "<|start_header_id|>assistant<|end_header_id|>\n\n" ) answer_str = "很高兴认识你!<|eot_id|>" _check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str) def test_qwen_template(): prompt_str = ( "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" "<|im_start|>user\nHow are you<|im_end|>\n" "<|im_start|>assistant\nI am fine!<|im_end|>\n" "<|im_start|>user\n你好<|im_end|>\n" "<|im_start|>assistant\n" ) answer_str = "很高兴认识你!<|im_end|>" _check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, extra_str="\n") @pytest.mark.skip(reason="The fast tokenizer of Yi model is corrupted.") def test_yi_template(): prompt_str = ( "<|im_start|>user\nHow are you<|im_end|>\n" "<|im_start|>assistant\nI am fine!<|im_end|>\n" "<|im_start|>user\n你好<|im_end|>\n" "<|im_start|>assistant\n" ) answer_str = "很高兴认识你!<|im_end|>" _check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str)