我们提供了多样化的大模型微调示例脚本。 请确保在 `LLaMA-Factory` 目录下执行下述命令。 ## 目录 - [LoRA 微调](#lora-微调) - [QLoRA 微调](#qlora-微调) - [全参数微调](#全参数微调) - [合并 LoRA 适配器与模型量化](#合并-lora-适配器与模型量化) - [推理 LoRA 模型](#推理-lora-模型) - [杂项](#杂项) 使用 `CUDA_VISIBLE_DEVICES`(GPU)或 `ASCEND_RT_VISIBLE_DEVICES`(NPU)选择计算设备。 ## 示例 ### LoRA 微调 #### (增量)预训练 ```bash llamafactory-cli train examples/train_lora/llama3_lora_pretrain.yaml ``` #### 指令监督微调 ```bash llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml ``` #### 多模态指令监督微调 ```bash llamafactory-cli train examples/train_lora/llava1_5_lora_sft.yaml ``` #### 奖励模型训练 ```bash llamafactory-cli train examples/train_lora/llama3_lora_reward.yaml ``` #### PPO 训练 ```bash llamafactory-cli train examples/train_lora/llama3_lora_ppo.yaml ``` #### DPO/ORPO/SimPO 训练 ```bash llamafactory-cli train examples/train_lora/llama3_lora_dpo.yaml ``` #### KTO 训练 ```bash llamafactory-cli train examples/train_lora/llama3_lora_kto.yaml ``` #### 预处理数据集 对于大数据集有帮助,在配置中使用 `tokenized_path` 以加载预处理后的数据集。 ```bash llamafactory-cli train examples/train_lora/llama3_preprocess.yaml ``` #### 在 MMLU/CMMLU/C-Eval 上评估 ```bash llamafactory-cli eval examples/train_lora/llama3_lora_eval.yaml ``` #### 批量预测并计算 BLEU 和 ROUGE 分数 ```bash llamafactory-cli train examples/train_lora/llama3_lora_predict.yaml ``` #### 多机指令监督微调 ```bash FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml ``` #### 使用 DeepSpeed ZeRO-3 平均分配显存 ```bash FORCE_TORCHRUN=1 llamafactory-cli train examples/train_lora/llama3_lora_sft_ds3.yaml ``` ### QLoRA 微调 #### 基于 4/8 比特 Bitsandbytes/HQQ/EETQ 量化进行指令监督微调(推荐) ```bash llamafactory-cli train examples/train_qlora/llama3_lora_sft_otfq.yaml ``` #### 基于 4/8 比特 GPTQ 量化进行指令监督微调 ```bash llamafactory-cli train examples/train_qlora/llama3_lora_sft_gptq.yaml ``` #### 基于 4 比特 AWQ 量化进行指令监督微调 ```bash llamafactory-cli train examples/train_qlora/llama3_lora_sft_awq.yaml ``` #### 基于 2 比特 AQLM 量化进行指令监督微调 ```bash llamafactory-cli train examples/train_qlora/llama3_lora_sft_aqlm.yaml ``` ### 全参数微调 #### 在单机上进行指令监督微调 ```bash FORCE_TORCHRUN=1 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml ``` #### 在多机上进行指令监督微调 ```bash FORCE_TORCHRUN=1 NNODES=2 RANK=0 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml FORCE_TORCHRUN=1 NNODES=2 RANK=1 MASTER_ADDR=192.168.0.1 MASTER_PORT=29500 llamafactory-cli train examples/train_full/llama3_full_sft_ds3.yaml ``` #### 批量预测并计算 BLEU 和 ROUGE 分数 ```bash llamafactory-cli train examples/train_full/llama3_full_predict.yaml ``` ### 合并 LoRA 适配器与模型量化 #### 合并 LoRA 适配器 注:请勿使用量化后的模型或 `quantization_bit` 参数来合并 LoRA 适配器。 ```bash llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml ``` #### 使用 AutoGPTQ 量化模型 ```bash llamafactory-cli export examples/merge_lora/llama3_gptq.yaml ``` ### 推理 LoRA 模型 #### 使用命令行接口 ```bash llamafactory-cli chat examples/inference/llama3_lora_sft.yaml ``` #### 使用浏览器界面 ```bash llamafactory-cli webchat examples/inference/llama3_lora_sft.yaml ``` #### 启动 OpenAI 风格 API ```bash llamafactory-cli api examples/inference/llama3_lora_sft.yaml ``` ### 杂项 #### 使用 GaLore 进行全参数训练 ```bash llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml ``` #### 使用 BAdam 进行全参数训练 ```bash llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml ``` #### LoRA+ 微调 ```bash llamafactory-cli train examples/extras/loraplus/llama3_lora_sft.yaml ``` #### PiSSA 微调 ```bash llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml ``` #### 深度混合微调 ```bash llamafactory-cli train examples/extras/mod/llama3_full_sft.yaml ``` #### LLaMA-Pro 微调 ```bash bash examples/extras/llama_pro/expand.sh llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml ``` #### FSDP+QLoRA 微调 ```bash bash examples/extras/fsdp_qlora/train.sh ```