# coding=utf-8 # Copyright 2024 Tencent Inc. and the LlamaFactory team. # # This code is inspired by the Tencent's LLaMA-Pro library. # https://github.com/TencentARC/LLaMA-Pro/blob/main/scripts/block_expansion.py # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from collections import OrderedDict from typing import TYPE_CHECKING, Optional import fire import torch from safetensors.torch import save_file from tqdm import tqdm from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer from transformers.modeling_utils import ( SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, shard_checkpoint, ) if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel def change_name(name: str, old_index: int, new_index: int) -> str: return name.replace(".{:d}.".format(old_index), ".{:d}.".format(new_index)) def block_expansion( model_name_or_path: str, output_dir: str, num_expand: int, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False, ): r""" Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models. Usage: python llama_pro.py --model_name_or_path meta-llama/Llama-2-7b-hf --output_dir llama2_pro --num_expand 8 """ config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) num_layers = getattr(config, "num_hidden_layers") setattr(config, "num_hidden_layers", num_layers + num_expand) config.save_pretrained(output_dir) tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) tokenizer.save_pretrained(output_dir) config: "PretrainedConfig" = AutoConfig.from_pretrained(model_name_or_path) # load the original one if save_safetensors: setattr(config, "tie_word_embeddings", False) # safetensors does not allow shared weights model: "PreTrainedModel" = AutoModelForCausalLM.from_pretrained( model_name_or_path, config=config, torch_dtype="auto", trust_remote_code=True, low_cpu_mem_usage=True, ) state_dict = model.state_dict() if num_layers % num_expand != 0: raise ValueError("`num_layers` {} should be divisible by `num_expand` {}.".format(num_layers, num_expand)) split = num_layers // num_expand layer_cnt = 0 output_state_dict = OrderedDict() for i in range(num_layers): for key, value in state_dict.items(): if ".{:d}.".format(i) in key: output_state_dict[change_name(key, i, layer_cnt)] = value print("Add layer {} copied from layer {}".format(layer_cnt, i)) layer_cnt += 1 if (i + 1) % split == 0: for key, value in state_dict.items(): if ".{:d}.".format(i) in key: if "down_proj" in key or "o_proj" in key: output_state_dict[change_name(key, i, layer_cnt)] = torch.zeros_like(value) else: output_state_dict[change_name(key, i, layer_cnt)] = torch.clone(value) print("Add layer {} expanded from layer {}".format(layer_cnt, i)) layer_cnt += 1 for key, value in state_dict.items(): if key not in output_state_dict: output_state_dict[key] = value weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME shards, index = shard_checkpoint(output_state_dict, max_shard_size=shard_size, weights_name=weights_name) for shard_file, shard in tqdm(shards.items(), desc="Save weights"): if save_safetensors: save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) else: torch.save(shard, os.path.join(output_dir, shard_file)) if index is None: print("Model weights saved in {}".format(os.path.join(output_dir, weights_name))) else: index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: json.dump(index, f, indent=2, sort_keys=True) print("Model weights saved in {}".format(output_dir)) print("Fine-tune this model with:") print("model_name_or_path: {}".format(output_dir)) print("finetuning_type: freeze") print("freeze_trainable_layers: {}".format(num_expand)) print("use_llama_pro: true") if __name__ == "__main__": fire.Fire(block_expansion)