80 lines
3.1 KiB
Python
80 lines
3.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import os
|
|
from typing import Sequence
|
|
|
|
from openai import OpenAI
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
require_version("openai>=1.5.0", "To fix: pip install openai>=1.5.0")
|
|
|
|
|
|
def calculate_gpa(grades: Sequence[str], hours: Sequence[int]) -> float:
|
|
grade_to_score = {"A": 4, "B": 3, "C": 2}
|
|
total_score, total_hour = 0, 0
|
|
for grade, hour in zip(grades, hours):
|
|
total_score += grade_to_score[grade] * hour
|
|
total_hour += hour
|
|
return round(total_score / total_hour, 2)
|
|
|
|
|
|
def main():
|
|
client = OpenAI(
|
|
api_key="{}".format(os.environ.get("API_KEY", "0")),
|
|
base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),
|
|
)
|
|
tools = [
|
|
{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "calculate_gpa",
|
|
"description": "Calculate the Grade Point Average (GPA) based on grades and credit hours",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {
|
|
"grades": {"type": "array", "items": {"type": "string"}, "description": "The grades"},
|
|
"hours": {"type": "array", "items": {"type": "integer"}, "description": "The credit hours"},
|
|
},
|
|
"required": ["grades", "hours"],
|
|
},
|
|
},
|
|
}
|
|
]
|
|
tool_map = {"calculate_gpa": calculate_gpa}
|
|
|
|
messages = []
|
|
messages.append({"role": "user", "content": "My grades are A, A, B, and C. The credit hours are 3, 4, 3, and 2."})
|
|
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
|
|
if result.choices[0].message.tool_calls is None:
|
|
raise ValueError("Cannot retrieve function call from the response.")
|
|
|
|
messages.append(result.choices[0].message)
|
|
tool_call = result.choices[0].message.tool_calls[0].function
|
|
print(tool_call)
|
|
# Function(arguments='{"grades": ["A", "A", "B", "C"], "hours": [3, 4, 3, 2]}', name='calculate_gpa')
|
|
name, arguments = tool_call.name, json.loads(tool_call.arguments)
|
|
tool_result = tool_map[name](**arguments)
|
|
messages.append({"role": "tool", "content": json.dumps({"gpa": tool_result}, ensure_ascii=False)})
|
|
result = client.chat.completions.create(messages=messages, model="test", tools=tools)
|
|
print(result.choices[0].message.content)
|
|
# Based on the grades and credit hours you provided, your Grade Point Average (GPA) is 3.42.
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|