LLaMA-Factory-Mirror/tests/data/test_collator.py

57 lines
1.8 KiB
Python

# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from llamafactory.data.collator import prepare_4d_attention_mask
def test_4d_attention_mask():
o = 0.0
x = torch.finfo(torch.float16).min
attention_mask_with_indices = torch.tensor(
[
[1, 1, 2, 2, 2, 0],
[1, 2, 2, 3, 3, 3],
]
)
attention_mask_computed = prepare_4d_attention_mask(attention_mask_with_indices, torch.float16)
attention_mask_expected = torch.tensor(
[
[
[
[o, x, x, x, x, x],
[o, o, x, x, x, x],
[x, x, o, x, x, x],
[x, x, o, o, x, x],
[x, x, o, o, o, x],
[x, x, x, x, x, x],
]
],
[
[
[o, x, x, x, x, x],
[x, o, x, x, x, x],
[x, o, o, x, x, x],
[x, x, x, o, x, x],
[x, x, x, o, o, x],
[x, x, x, o, o, o],
]
],
],
dtype=torch.float16,
)
assert list(attention_mask_computed.size()) == [2, 1, 6, 6]
assert torch.all(attention_mask_computed == attention_mask_expected)