170 lines
7.1 KiB
Python
170 lines
7.1 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
from typing import TYPE_CHECKING, List, Sequence
|
|
|
|
import pytest
|
|
from transformers import AutoTokenizer
|
|
|
|
from llamafactory.data import get_template_and_fix_tokenizer
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
|
|
|
|
MESSAGES = [
|
|
{"role": "user", "content": "How are you"},
|
|
{"role": "assistant", "content": "I am fine!"},
|
|
{"role": "user", "content": "你好"},
|
|
{"role": "assistant", "content": "很高兴认识你!"},
|
|
]
|
|
|
|
|
|
def _check_tokenization(
|
|
tokenizer: "PreTrainedTokenizer", batch_input_ids: Sequence[Sequence[int]], batch_text: Sequence[str]
|
|
) -> None:
|
|
for input_ids, text in zip(batch_input_ids, batch_text):
|
|
assert input_ids == tokenizer.encode(text, add_special_tokens=False)
|
|
assert tokenizer.decode(input_ids) == text
|
|
|
|
|
|
def _check_single_template(
|
|
model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str, use_fast: bool
|
|
) -> List[str]:
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=use_fast, token=HF_TOKEN)
|
|
content_str = tokenizer.apply_chat_template(MESSAGES, tokenize=False)
|
|
content_ids = tokenizer.apply_chat_template(MESSAGES, tokenize=True)
|
|
template = get_template_and_fix_tokenizer(tokenizer, name=template_name)
|
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
|
|
assert content_str == prompt_str + answer_str + extra_str
|
|
assert content_ids == prompt_ids + answer_ids + tokenizer.encode(extra_str, add_special_tokens=False)
|
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
|
return content_ids
|
|
|
|
|
|
def _check_template(model_id: str, template_name: str, prompt_str: str, answer_str: str, extra_str: str = "") -> None:
|
|
"""
|
|
Checks template for both the slow tokenizer and the fast tokenizer.
|
|
|
|
Args:
|
|
model_id: the model id on hugging face hub.
|
|
template_name: the template name.
|
|
prompt_str: the string corresponding to the prompt part.
|
|
answer_str: the string corresponding to the answer part.
|
|
extra_str: the extra string in the jinja template of the original tokenizer.
|
|
"""
|
|
slow_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=False)
|
|
fast_ids = _check_single_template(model_id, template_name, prompt_str, answer_str, extra_str, use_fast=True)
|
|
assert slow_ids == fast_ids
|
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_encode_oneturn(use_fast: bool):
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
template = get_template_and_fix_tokenizer(tokenizer, name="llama3")
|
|
prompt_ids, answer_ids = template.encode_oneturn(tokenizer, MESSAGES)
|
|
prompt_str = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
|
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|eot_id|>"
|
|
_check_tokenization(tokenizer, (prompt_ids, answer_ids), (prompt_str, answer_str))
|
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_encode_multiturn(use_fast: bool):
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
template = get_template_and_fix_tokenizer(tokenizer, name="llama3")
|
|
encoded_pairs = template.encode_multiturn(tokenizer, MESSAGES)
|
|
prompt_str_1 = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str_1 = "I am fine!<|eot_id|>"
|
|
prompt_str_2 = (
|
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str_2 = "很高兴认识你!<|eot_id|>"
|
|
_check_tokenization(
|
|
tokenizer,
|
|
(encoded_pairs[0][0], encoded_pairs[0][1], encoded_pairs[1][0], encoded_pairs[1][1]),
|
|
(prompt_str_1, answer_str_1, prompt_str_2, answer_str_2),
|
|
)
|
|
|
|
|
|
@pytest.mark.parametrize("use_fast", [True, False])
|
|
def test_jinja_template(use_fast: bool):
|
|
tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
ref_tokenizer = AutoTokenizer.from_pretrained(TINY_LLAMA, use_fast=use_fast)
|
|
get_template_and_fix_tokenizer(tokenizer, name="llama3")
|
|
assert tokenizer.chat_template != ref_tokenizer.chat_template
|
|
assert tokenizer.apply_chat_template(MESSAGES) == ref_tokenizer.apply_chat_template(MESSAGES)
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
|
def test_gemma_template():
|
|
prompt_str = (
|
|
"<bos><start_of_turn>user\nHow are you<end_of_turn>\n"
|
|
"<start_of_turn>model\nI am fine!<end_of_turn>\n"
|
|
"<start_of_turn>user\n你好<end_of_turn>\n"
|
|
"<start_of_turn>model\n"
|
|
)
|
|
answer_str = "很高兴认识你!"
|
|
_check_template("google/gemma-2-9b-it", "gemma", prompt_str, answer_str, extra_str="<end_of_turn>\n")
|
|
|
|
|
|
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
|
|
def test_llama3_template():
|
|
prompt_str = (
|
|
"<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\nI am fine!<|eot_id|>"
|
|
"<|start_header_id|>user<|end_header_id|>\n\n你好<|eot_id|>"
|
|
"<|start_header_id|>assistant<|end_header_id|>\n\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|eot_id|>"
|
|
_check_template("meta-llama/Meta-Llama-3-8B-Instruct", "llama3", prompt_str, answer_str)
|
|
|
|
|
|
def test_qwen_template():
|
|
prompt_str = (
|
|
"<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
|
|
"<|im_start|>user\nHow are you<|im_end|>\n"
|
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
|
|
"<|im_start|>user\n你好<|im_end|>\n"
|
|
"<|im_start|>assistant\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|im_end|>"
|
|
_check_template("Qwen/Qwen2-7B-Instruct", "qwen", prompt_str, answer_str, extra_str="\n")
|
|
|
|
|
|
@pytest.mark.skip(reason="The fast tokenizer of Yi model is corrupted.")
|
|
def test_yi_template():
|
|
prompt_str = (
|
|
"<|im_start|>user\nHow are you<|im_end|>\n"
|
|
"<|im_start|>assistant\nI am fine!<|im_end|>\n"
|
|
"<|im_start|>user\n你好<|im_end|>\n"
|
|
"<|im_start|>assistant\n"
|
|
)
|
|
answer_str = "很高兴认识你!<|im_end|>"
|
|
_check_template("01-ai/Yi-1.5-6B-Chat", "yi", prompt_str, answer_str)
|