LLaMA-Factory-Mirror/saves/LLaMA2-7B/lora/sft
wql bbabfc674b update saves 2024-08-12 06:39:25 +00:00
..
checkpoint-45 update saves 2024-08-12 06:39:25 +00:00
README.md update saves 2024-08-12 06:39:25 +00:00
adapter_config.json update saves 2024-08-12 06:39:25 +00:00
adapter_model.safetensors update saves 2024-08-12 06:39:25 +00:00
added_tokens.json update saves 2024-08-12 06:39:25 +00:00
all_results.json update saves 2024-08-12 06:39:25 +00:00
eval_results.json update saves 2024-08-12 06:39:25 +00:00
special_tokens_map.json update saves 2024-08-12 06:39:25 +00:00
tokenizer.json update saves 2024-08-12 06:39:25 +00:00
tokenizer.model update saves 2024-08-12 06:39:25 +00:00
tokenizer_config.json update saves 2024-08-12 06:39:25 +00:00
train_results.json update saves 2024-08-12 06:39:25 +00:00
trainer_log.jsonl update saves 2024-08-12 06:39:25 +00:00
trainer_state.json update saves 2024-08-12 06:39:25 +00:00
training_args.bin update saves 2024-08-12 06:39:25 +00:00

README.md

base_model library_name license tags model-index
/home/user/.cache/modelscope/hub/modelscope/Llama-2-7b-ms peft other
llama-factory
lora
generated_from_trainer
name results
sft

sft

This model is a fine-tuned version of /home/user/.cache/modelscope/hub/modelscope/Llama-2-7b-ms on the identity and the alpaca_en_demo datasets. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 20
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1