LLaMA-Factory-Mirror/data/hh_rlhf_en/hh_rlhf_en.py

99 lines
3.5 KiB
Python

import os
import json
import datasets
from typing import List
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
_DESCRIPTION = "Human preference data about helpfulness and harmlessness."
_CITATION = ""
_HOMEPAGE = "{}/datasets/Anthropic/hh-rlhf".format(_HF_ENDPOINT)
_LICENSE = "mit"
_URL = "{}/datasets/Anthropic/hh-rlhf/resolve/main/".format(_HF_ENDPOINT)
_URLS = {
"train": [
_URL + "harmless-base/train.jsonl.gz",
_URL + "helpful-base/train.jsonl.gz",
_URL + "helpful-online/train.jsonl.gz",
_URL + "helpful-rejection-sampled/train.jsonl.gz"
],
"test": [
_URL + "harmless-base/test.jsonl.gz",
_URL + "helpful-base/test.jsonl.gz",
_URL + "helpful-online/test.jsonl.gz",
_URL + "helpful-rejection-sampled/test.jsonl.gz"
]
}
class HhRlhfEn(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("0.0.0")
def _info(self) -> datasets.DatasetInfo:
features = datasets.Features({
"instruction": datasets.Value("string"),
"output": datasets.Sequence(datasets.Value("string")),
"history": datasets.Sequence(datasets.Sequence(datasets.Value("string")))
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
file_path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": file_path["train"]
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": file_path["test"]
}
)
]
def _generate_examples(self, filepaths: List[str]):
key = 0
for filepath in filepaths:
with open(filepath, "r", encoding="utf-8") as f:
for row in f:
data = json.loads(row)
chosen = data["chosen"]
rejected = data["rejected"]
assist_idx = rejected.rfind("\n\nAssistant: ")
r_reject = rejected[assist_idx+13:].strip()
assist_idx = chosen.rfind("\n\nAssistant: ")
r_accept = chosen[assist_idx+13:].strip()
human_idx = chosen.rfind("\n\nHuman: ")
query = chosen[human_idx+9:assist_idx].strip()
prompt = chosen[:human_idx]
history = []
while prompt.rfind("\n\nAssistant: ") != -1:
assist_idx = prompt.rfind("\n\nAssistant: ")
human_idx = prompt.rfind("\n\nHuman: ")
if human_idx != -1:
old_query = prompt[human_idx+9:assist_idx].strip()
old_resp = prompt[assist_idx+13:].strip()
history.insert(0, (old_query, old_resp))
else:
break
prompt = prompt[:human_idx]
yield key, {
"instruction": query,
"output": [r_accept, r_reject],
"history": history
}
key += 1