LLaMA-Factory-Mirror/scripts/llamafy_internlm2.py

115 lines
4.9 KiB
Python

# coding=utf-8
# Converts the InternLM2 model in the same format as LLaMA2.
# Usage: python llamafy_internlm2.py --input_dir input --output_dir output
# Warning: We have found that the converted model cannot infer correctly. It will be fixed later.
import json
import os
from collections import OrderedDict
from typing import Any, Dict, Optional
import fire
import torch
from safetensors.torch import save_file
from tqdm import tqdm
from transformers.modeling_utils import (
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
shard_checkpoint,
)
CONFIG_NAME = "config.json"
def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
internlm2_config_dict: Dict[str, Any] = json.load(f)
internlm2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for filepath in tqdm(os.listdir(input_dir), desc="Load weights"):
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"):
shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu")
internlm2_state_dict.update(shard_weight)
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
for key, value in tqdm(internlm2_state_dict.items(), desc="Convert format"):
if "output" in key:
llama2_state_dict[key.replace("output", "lm_head")] = value
elif "tok_embeddings" in key:
llama2_state_dict[key.replace("tok_embeddings", "embed_tokens")] = value
elif "wqkv" in key:
num_q_heads = internlm2_config_dict["num_attention_heads"]
num_kv_heads = internlm2_config_dict["num_key_value_heads"]
q_size = value.size(0) // (num_q_heads + 2 * num_kv_heads) * num_q_heads
kv_size = value.size(0) // (num_q_heads + 2 * num_kv_heads) * num_kv_heads
llama2_state_dict[key.replace("attention.wqkv", "self_attn.q_proj")] = value[:q_size, ...]
llama2_state_dict[key.replace("attention.wqkv", "self_attn.k_proj")] = value[
q_size : q_size + kv_size, ...
]
llama2_state_dict[key.replace("attention.wqkv", "self_attn.v_proj")] = value[q_size + kv_size :, ...]
elif "wo" in key:
llama2_state_dict[key.replace("attention.wo", "self_attn.o_proj")] = value
elif "attention_norm" in key:
llama2_state_dict[key.replace("attention_norm", "input_layernorm")] = value
elif "ffn_norm" in key:
llama2_state_dict[key.replace("ffn_norm", "post_attention_layernorm")] = value
elif "w1" in key:
llama2_state_dict[key.replace("feed_forward.w1", "mlp.gate_proj")] = value
elif "w2" in key:
llama2_state_dict[key.replace("feed_forward.w2", "mlp.down_proj")] = value
elif "w3" in key:
llama2_state_dict[key.replace("feed_forward.w3", "mlp.up_proj")] = value
else:
llama2_state_dict[key] = value
weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name)
for shard_file, shard in tqdm(shards.items(), desc="Save weights"):
if save_safetensors:
save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"})
else:
torch.save(shard, os.path.join(output_dir, shard_file))
if index is None:
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
else:
index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME
with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f:
json.dump(index, f, indent=2, sort_keys=True)
print("Model weights saved in {}".format(output_dir))
def save_config(input_dir: str, output_dir: str):
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
llama2_config_dict: Dict[str, Any] = json.load(f)
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
llama2_config_dict.pop("auto_map", None)
llama2_config_dict.pop("bias", None)
llama2_config_dict.pop("rope_scaling", None)
llama2_config_dict["model_type"] = "llama"
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
json.dump(llama2_config_dict, f, indent=2)
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
def llamafy_internlm2(
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
):
try:
os.makedirs(output_dir, exist_ok=False)
except Exception as e:
raise print("Output dir already exists", e)
save_weight(input_dir, output_dir, shard_size, save_safetensors)
save_config(input_dir, output_dir)
if __name__ == "__main__":
fire.Fire(llamafy_internlm2)