136 lines
5.7 KiB
Python
136 lines
5.7 KiB
Python
# coding=utf-8
|
|
# Converts the Qwen models in the same format as LLaMA2.
|
|
# Usage: python llamafy_qwen.py --input_dir input --output_dir output --shard_size 10GB
|
|
|
|
import os
|
|
import fire
|
|
import json
|
|
import torch
|
|
from collections import OrderedDict
|
|
from safetensors import safe_open
|
|
from transformers.modeling_utils import shard_checkpoint, WEIGHTS_NAME, WEIGHTS_INDEX_NAME
|
|
from transformers.utils import check_min_version
|
|
from typing import Any, Dict
|
|
|
|
try:
|
|
check_min_version("4.34.0")
|
|
except:
|
|
raise ValueError("Please upgrade `transformers` to 4.34.0")
|
|
|
|
|
|
CONFIG_NAME = "config.json"
|
|
|
|
|
|
def save_weight(
|
|
input_dir: str,
|
|
output_dir: str,
|
|
shard_size: str
|
|
) -> str:
|
|
qwen_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
|
for filepath in os.listdir(input_dir):
|
|
if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".safetensors"):
|
|
with safe_open(os.path.join(input_dir, filepath), framework="pt", device="cpu") as f:
|
|
for key in f.keys():
|
|
qwen_state_dict[key] = f.get_tensor(key)
|
|
|
|
llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict()
|
|
torch_dtype = None
|
|
for key, value in qwen_state_dict.items():
|
|
if torch_dtype is None:
|
|
torch_dtype = value.dtype
|
|
if "wte" in key:
|
|
llama2_state_dict["model.embed_tokens.weight"] = value
|
|
elif "ln_f" in key:
|
|
llama2_state_dict["model.norm.weight"] = value
|
|
else:
|
|
key = key.replace("transformer.h", "model.layers")
|
|
if "attn.c_attn" in key:
|
|
proj_size = value.size(0) // 3
|
|
llama2_state_dict[key.replace("attn.c_attn", "self_attn.q_proj")] = value[:proj_size, ...]
|
|
llama2_state_dict[key.replace("attn.c_attn", "self_attn.k_proj")] = value[proj_size:2*proj_size, ...]
|
|
llama2_state_dict[key.replace("attn.c_attn", "self_attn.v_proj")] = value[2*proj_size:, ...]
|
|
elif "attn.c_proj" in key:
|
|
llama2_state_dict[key.replace("attn.c_proj", "self_attn.o_proj")] = value
|
|
llama2_state_dict[key.replace("attn.c_proj.weight", "self_attn.o_proj.bias")] = (
|
|
torch.zeros_like(value[:, 0]).squeeze()
|
|
)
|
|
elif "ln_1" in key:
|
|
llama2_state_dict[key.replace("ln_1", "input_layernorm")] = value
|
|
elif "ln_2" in key:
|
|
llama2_state_dict[key.replace("ln_2", "post_attention_layernorm")] = value
|
|
elif "mlp.w1" in key:
|
|
llama2_state_dict[key.replace("mlp.w1", "mlp.up_proj")] = value
|
|
elif "mlp.w2" in key:
|
|
llama2_state_dict[key.replace("mlp.w2", "mlp.gate_proj")] = value
|
|
elif "mlp.c_proj" in key:
|
|
llama2_state_dict[key.replace("mlp.c_proj", "mlp.down_proj")] = value
|
|
elif "lm_head" in key:
|
|
llama2_state_dict[key] = value
|
|
else:
|
|
raise KeyError("Unable to process key {}".format(key))
|
|
|
|
shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=WEIGHTS_NAME)
|
|
for shard_file, shard in shards.items():
|
|
torch.save(shard, os.path.join(output_dir, shard_file))
|
|
|
|
if index is None:
|
|
print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME)))
|
|
else:
|
|
with open(os.path.join(output_dir, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
|
|
json.dump(index, f, indent=2, sort_keys=True)
|
|
print("Model weights saved in {}".format(output_dir))
|
|
|
|
return str(torch_dtype).replace("torch.", "")
|
|
|
|
|
|
def save_config(
|
|
input_dir: str,
|
|
output_dir: str,
|
|
torch_dtype: str
|
|
):
|
|
with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f:
|
|
qwen_config_dict: Dict[str, Any] = json.load(f)
|
|
|
|
llama2_config_dict: Dict[str, Any] = OrderedDict()
|
|
llama2_config_dict["architectures"] = ["LlamaForCausalLM"]
|
|
llama2_config_dict["hidden_act"] = "silu"
|
|
llama2_config_dict["hidden_size"] = qwen_config_dict["hidden_size"]
|
|
llama2_config_dict["initializer_range"] = qwen_config_dict["initializer_range"]
|
|
llama2_config_dict["intermediate_size"] = qwen_config_dict["intermediate_size"] // 2
|
|
llama2_config_dict["max_position_embeddings"] = qwen_config_dict["max_position_embeddings"]
|
|
llama2_config_dict["model_type"] = "llama"
|
|
llama2_config_dict["num_attention_heads"] = qwen_config_dict["num_attention_heads"]
|
|
llama2_config_dict["num_hidden_layers"] = qwen_config_dict["num_hidden_layers"]
|
|
llama2_config_dict["num_key_value_heads"] = qwen_config_dict["hidden_size"] // qwen_config_dict["kv_channels"]
|
|
llama2_config_dict["pretraining_tp"] = 1
|
|
llama2_config_dict["rms_norm_eps"] = qwen_config_dict["layer_norm_epsilon"]
|
|
llama2_config_dict["rope_scaling"] = None
|
|
llama2_config_dict["tie_word_embeddings"] = qwen_config_dict["tie_word_embeddings"]
|
|
llama2_config_dict["torch_dtype"] = torch_dtype
|
|
llama2_config_dict["transformers_version"] = "4.34.0"
|
|
llama2_config_dict["use_cache"] = True
|
|
llama2_config_dict["vocab_size"] = qwen_config_dict["vocab_size"]
|
|
llama2_config_dict["attention_bias"] = True
|
|
|
|
with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f:
|
|
json.dump(llama2_config_dict, f, indent=2)
|
|
print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME)))
|
|
|
|
|
|
def llamafy_qwen(
|
|
input_dir: str,
|
|
output_dir: str,
|
|
shard_size: str
|
|
):
|
|
try:
|
|
os.makedirs(output_dir, exist_ok=False)
|
|
except Exception as e:
|
|
raise print("Output dir already exists", e)
|
|
|
|
torch_dtype = save_weight(input_dir, output_dir, shard_size)
|
|
save_config(input_dir, output_dir, torch_dtype)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(llamafy_qwen)
|