finish example and documentation for Algorithms and Environments

This commit is contained in:
Chengshu Li 2020-04-04 23:34:37 -07:00
parent a0b878367a
commit 83fdaaebe5
17 changed files with 428 additions and 24 deletions

View File

@ -1,4 +1,64 @@
# Algorithms
TODO: @eric
tf-agents
pytorch
### Overview
iGibson can be used with any algorithms (from optimal control to model-free reinforcement leanring) that accommodate OpenAI gym interface. Feel free to use your favorite algorithms and deep learning frameworks.
### Examples
#### TF-Agents
In this example, we show an environment wrapper of [TF-Agents](https://github.com/tensorflow/agents) for iGibson and an example training code for [SAC agent](https://arxiv.org/abs/1801.01290). The code can be found in [our fork of TF-Agents](https://github.com/StanfordVL/agents/): [agents/blob/gibson_sim2real/tf_agents/environments/suite_gibson.py](https://github.com/StanfordVL/agents/blob/gibson_sim2real/tf_agents/environments/suite_gibson.py) and [agents/blob/gibson_sim2real/tf_agents/agents/sac/examples/v1/train_single_env.sh](https://github.com/StanfordVL/agents/blob/gibson_sim2real/tf_agents/agents/sac/examples/v1/train_single_env.sh).
```python
def load(config_file,
model_id=None,
env_type='gibson',
sim2real_track='static',
env_mode='headless',
action_timestep=1.0 / 5.0,
physics_timestep=1.0 / 40.0,
device_idx=0,
random_position=False,
random_height=False,
gym_env_wrappers=(),
env_wrappers=(),
spec_dtype_map=None):
config_file = os.path.join(os.path.dirname(gibson2.__file__), config_file)
if env_type == 'gibson':
if random_position:
env = NavigateRandomEnv(config_file=config_file,
mode=env_mode,
action_timestep=action_timestep,
physics_timestep=physics_timestep,
device_idx=device_idx,
random_height=random_height)
else:
env = NavigateEnv(config_file=config_file,
mode=env_mode,
action_timestep=action_timestep,
physics_timestep=physics_timestep,
device_idx=device_idx)
elif env_type == 'gibson_sim2real':
env = NavigateRandomEnvSim2Real(config_file=config_file,
mode=env_mode,
action_timestep=action_timestep,
physics_timestep=physics_timestep,
device_idx=device_idx,
track=sim2real_track)
else:
assert False, 'unknown env_type: {}'.format(env_type)
discount = env.discount_factor
max_episode_steps = env.max_step
return wrap_env(
env,
discount=discount,
max_episode_steps=max_episode_steps,
gym_env_wrappers=gym_env_wrappers,
time_limit_wrapper=wrappers.TimeLimit,
env_wrappers=env_wrappers,
spec_dtype_map=spec_dtype_map,
auto_reset=True
```

View File

@ -1,3 +1,199 @@
# Environments
TODO: @eric
Also need to explain yaml config files
### Overview
We provide **Environments** that follow the [OpenAI gym](https://github.com/openai/gym) interface for applications such as reinforcement learning algorithms. Generally speaking, an **Environment** instantiates **Scene**, **Object** and **Robot** and import them into its **Simulator**. An **Environment** can also be interpreted as a task definition, which includes observation_space, action space, reward, and termination condition. Most of the code can be found here:
[gibson2/envs/locomotor_env.py](https://github.com/StanfordVL/iGibson/blob/master/gibson2/envs/locomotor_env.py).
#### Config
To instantiate an **Environment**, we first need to create a YAML config file. It will specifies a number of parameters for the **Environment**, such as which scenes, robots, objects to load, what the sensor specs are, etc. Exapmles of config files can be found here: [examples/configs](https://github.com/StanfordVL/iGibson/tree/master/examples/configs).
Here is one example: [examples/configs/turtlebot_p2p_nav.yaml](https://github.com/StanfordVL/iGibson/blob/master/examples/configs/turtlebot_p2p_nav.yaml)
```yaml
# scene
scene: building
model_id: Rs
is_interactive: false
build_graph: true
load_texture: true
pybullet_load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 2
# robot
robot: Turtlebot
velocity: 1.0
# task, observation and action
task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: false
additional_states_dim: 4
# reward
reward_type: geodesic
success_reward: 10.0
slack_reward: -0.01
potential_reward_weight: 1.0
collision_reward_weight: -0.1
collision_ignore_link_a_ids: [1, 2, 3, 4] # ignore collisions with these robot links
# discount factor
discount_factor: 0.99
# termination condition
dist_tol: 0.36 # body width
max_step: 500
max_collisions_allowed: 500
goal_format: polar
# sensor spec
output: [sensor, rgb, depth, scan]
# image
# ASUS Xtion PRO LIVE
# https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE
fisheye: false
image_width: 640
image_height: 480
vertical_fov: 45
# depth
depth_low: 0.8
depth_high: 3.5
# scan
# Hokuyo URG-04LX-UG01
# https://www.hokuyo-aut.jp/search/single.php?serial=166
# n_horizontal_rays is originally 683, sub-sampled 1/3
n_horizontal_rays: 228
n_vertical_beams: 1
laser_linear_range: 5.6
laser_angular_range: 240.0
min_laser_dist: 0.05
laser_link_name: scan_link
# sensor noise
depth_noise_rate: 0.0
scan_noise_rate: 0.0
# visual objects
visual_object_at_initial_target_pos: true
target_visual_object_visible_to_agent: false
```
Parameters of this config file is explained below:
| Attribute | Example Value | Expalanation |
| ----------| ------------- | ------------ |
| scene | building | which type of scene: [empty, stadium, building] |
| model_id | Rs | model_id for the building scene |
| is_interactive | false | whether the scene is interactive, only model_id in `dataset/gibson_list` supports interactivity |
| build_graph | true | whether to build traversability graph for the building scene |
| load_texture | true | whether to load texture into MeshRenderer. Can be set to false if RGB is not needed |
| pybullet_load_texture | true | whether to load texture into PyBullet, for debugging purpose only |
| trav_map_resolution | 0.1 | resolution of the traversability map. 0.1 means each pixel represents 0.1 meter |
| trav_map_erosion | 2 | number of pixels to erode the traversability map. trav_map_resolution * trav_map_erosion should be almost equal to the radius of the robot base |
| robot | Turtlebot | which type of robot, e.g. Turtlebot, Fetch, Locobot, etc |
| is_discrete | false | whether to use discrete action space for the robot |
| velocity | 1.0 | maximum normalized joint velocity. 0.5 means maximum robot action will actuate half of maximum joint velocities that are allowed in the robot URDF file |
| task | pointgoal | which type of task, e.g. pointgoal, objectgoal, etc |
| target_dist_min | 1.0 | minimum distance (in meters) between the initial and target positions for the navigation task |
| target_dist_max | 10.0 | maximum distance (in meters) between the initial and target positions for the navigation task |
| initial_pos_z_offset | 0.1 | z-offset (in meters) when placing the robots and the objects to accommodate uneven floor surface |
| additional_states_dim | 4 | the dimension of proprioceptive observation such as odometry and joint states. It should exactly match the dimension of the output of `get_additional_states()` |
| reward_type | geodesic | which type of reward: [geodesic, l2, sparse], or define your own |
| success_reward | 10.0 | scaling factor of the success reward |
| slack_reward | -0.01 | scaling factor of the slack reward (negative because it should be a penalty) |
| potential_reward_weight | 1.0 | scaling factor of the potential reward |
| collision_reward_weight | -0.1 | scaling factor of the collision reward (negative because it should be a penalty) |
| collision_ignore_link_a_ids | [1, 2, 3, 4] | collision with these robot links will not result in collision penalty. These usually are links of wheels and caster wheels of the robot |
| discount_factor | 0.99 | discount factor for the MDP |
| dist_tol | 0.36 | the distance tolerance for converging to the navigation goal. This is usually equal to the diameter of the robot base |
| max_step | 500 | maximum number of timesteps allowed in an episode |
| max_collisions_allowed | 500 | maximum number of timesteps with robot collision allowed in an episode |
| goal_format | polar | which format to represent the navigation goals: [polar, cartesian] |
| output | [sensor, rgb, depth, scan] | what observation space is. sensor means proprioceptive info, rgb and depth mean RGBD camera sensing, scan means LiDAR sensing |
| fisheye | false | whether to use fisheye camera |
| image_width | 640 | image width for the camera |
| image_height | 480 | image height for the camera |
| vertical_fov | 45 | camera vertial field of view (in degrees) |
| depth_low | 0.8 | lower bound of the valid range of the depth camera |
| depth_high | 3.5 | upper bound of the valid range of the depth camera |
| n_horizontal_rays | 228 | number of horizontal rays to simulate for the LiDAR |
| n_vertical_beams | 1 | number of vertical beams to simulate for the LiDAR. Currently iGibson only supports n_vertical_beams == 1 |
| laser_linear_range | 5.6 | upper bound of the valid range of the LiDAR |
| laser_angular_range | 240.0 | angular range of the LiDAR (in degrees) |
| min_laser_dist | 0.05 | lower bound of the valid range of the LiDAR |
| laser_link_name | scan_link | the link name of the LiDAR sensor in the robot URDF file |
| depth_noise_rate | 0.0 | noise rate for the depth camera. 0.1 means 10% of the pixels will be corrupted (set to 0.0) |
| scan_noise_rate | 0.0 | noise rate for the LiDAR. 0.1 means 10% of the rays will be corrupted (set to laser_linear_range) |
| visual_object_at_initial_target_pos | true | whether to show visual markers for the initial and target positions |
| target_visual_object_visible_to_agent | false | whether these visual markers are visible to the agents |
#### Task Definition
The main **Environment** classes (`NavigateEnv` and `NavigateRandomEnv`) that use the YAML config files can be found here: [gibson2/envs/locomotor_env.py](https://github.com/StanfordVL/iGibson/blob/master/gibson2/envs/locomotor_env.py).
`NavigateEnv` provides an environment to train PointGoal navigation task for fixed locations. `NavigateRandomEnv` builds on top of `NavigateEnv` and includes a mechanism to randomly sample initial and target positions. Following the OpenAI gym convention, they can be readily used to train RL agents.
It's also fairly straighforward to cusutomize your own environment.
- Inherit `NavigateEnv` or `NavigateRandomEnv` and reuse as much functionality as possible.
- Want to change the observation space? Modify `load_observation_space`, `get_state` and its helper functions.
- Want to change reward function? Modify `get_reward`.
- Want to change termination condition? Modify `get_termination`.
- Want to modify episode reset logic? Modify `reset` and `reset_agent`.
- Want to add additional objects or robots into the scene? Check out `load_interactive_objects` and `load_dynamic_objects` in `NavigateRandomEnvSim2Real`. If these are brand-new objects and robots that are not in iGibson yet, you might also need to change [gibson2/core/physics/robot_locomotors.py](https://github.com/StanfordVL/iGibson/blob/master/gibson2/core/physics/robot_locomotors.py) and [gibson2/core/physics/interactive_objects.py](https://github.com/StanfordVL/iGibson/blob/master/gibson2/core/physics/interactive_objects.py).
### Examples
#### Static Environments
In this example, we show how to instantiate `NavigateRandomEnv` and how to step through the environment. At the beginning of each episode, we need to call `nav_env.reset()`. Then we need to call `nav_env.step(action)` to step through the environment and retrieve `(state, reward, done, info)`.
- `state`: a python dictionary of observations, e.g. `state['rgb']` will be a H x W x 3 numpy array that represents the current image
- `reward`: a scalar that represents the current reward
- `done`: a boolean that indicates whether the episode should terminate
- `info`: a python dictionary for bookkeeping purpose
The code can be found here: [examples/demo/env_example.py](https://github.com/StanfordVL/iGibson/blob/master/examples/demo/env_example.py).
```python
from gibson2.envs.locomotor_env import NavigateEnv, NavigateRandomEnv
from time import time
import numpy as np
from time import time
import gibson2
import os
from gibson2.core.render.profiler import Profiler
def main():
config_filename = os.path.join(os.path.dirname(gibson2.__file__),
'../examples/configs/turtlebot_demo.yaml')
nav_env = NavigateRandomEnv(config_file=config_filename, mode='gui')
for j in range(10):
nav_env.reset()
for i in range(100):
with Profiler('Env action step'):
action = nav_env.action_space.sample()
state, reward, done, info = nav_env.step(action)
if done:
print("Episode finished after {} timesteps".format(i + 1))
break
if __name__ == "__main__":
main()
```
You actually have already run this in [Quickstart](quickstart.md)!
#### Interactive Environments
In this example, we show how to instantiate `NavigateRandomEnv` with an interactive scene `Placida`. In this scene, the robot can interact with many objects (chairs, tables, couches, etc) by pushing them around. The code can be found here: [examples/demo/env_interactive_example.py](https://github.com/StanfordVL/iGibson/blob/master/examples/demo/env_interactive_example.py).
#### Customized Environments
In this example, we show a customized environment `NavigateRandomEnvSim2Real` that builds on top of `NavigateRandomEnv`. We created this environment for [our CVPR2020 Sim2Real Challenge with iGibson](http://svl.stanford.edu/igibson/challenge.html). You should consider participating. :)
Here are the custimizations that we did:
- We added a new robot `Locobot` to [gibson2/core/physics/robot_locomotors.py](https://github.com/StanfordVL/iGibson/blob/master/gibson2/core/physics/robot_locomotors.py)
- We added additional objects into the scene: `load_interactive_objects` in `NavigateRandomEnvSim2Real`
- We added dynamic objects (another Turtlebot) into the scene: `reset_dynamic_objects` and `step_dynamic_objects` in `NavigateRandomEnvSim2Real`
The code can be found here: [gibson2/envs/locomotor_env.py](https://github.com/StanfordVL/iGibson/blob/master/gibson2/envs/locomotor_env.py) and [examples/demo/env_customized_example.py](https://github.com/StanfordVL/iGibson/blob/master/examples/demo/env_customized_example.py).

View File

@ -10,7 +10,7 @@ In the next layer, we have **Renderer** and **PhysicsEngine**. These are the two
In the next layer, we have **Scene**, **Object**, **Robot**, and **Simulator**. **Scene** loads 3D scene meshes from `gibson2.dataset_path`. **Object** loads interactable objects from `gibson2.assets_path`. **Robot** loads robots from `gibson2.assets_path`. **Simulator** maintains an instance of **Renderer** and **PhysicsEngine** and provides APIs to import **Scene**, **Object** and **Robot** into both of them and keep them synchronized at all time. More info can be found here: [Scene](scenes.md), [Object](objects.md), [Robot](robots.md) and [Simulator](simulators.md).
In the next layer, we have **Environment**. **Environment** follows the [OpenAI gym](https://github.com/openai/gym) convention and provides an API interface for applications such as **Algorithms** and **ROS**. **Env** usually defines a task for an agent to solve, which includes observation_space, action space, reward, termination condition, etc. More info can be found here: [Environment](environments.md).
In the next layer, we have **Environment**. **Environment** follows the [OpenAI gym](https://github.com/openai/gym) convention and provides an API interface for applications such as **Algorithms** and **ROS**. **Environment** usually defines a task for an agent to solve, which includes observation_space, action space, reward, termination condition, etc. More info can be found here: [Environment](environments.md).
In the top and final layer, we have **Algorithm** and **ROS**. **Algorithm** can be any algorithms (from optimal control to model-free reinforcement leanring) that accommodate OpenAI gym interface. We also provide tight integration with **ROS** that allows for evaluation and visualization of, say, ROS Navigation Stack, in iGibson. More info can be found here: [Algorithm](algorithms.md) and [ROS](ros.md).

View File

@ -12,6 +12,8 @@ To be more specific, `BuildingScene`
- loads the scene objects and places them in their original locations if the scene is interactive
- provides APIs for sampling a random location in the scene, and for computing the shortest path between two locations in the scene.
Most of the code can be found here: [gibson2/core/physics/scene.py](https://github.com/StanfordVL/iGibson/blob/master/gibson2/core/physics/scene.py).
### Examples
#### Stadium Scenes
@ -99,7 +101,7 @@ For example, in the scene `Placida` below, the couches, the coffee table, the di
#### Visualize Traversability Map
In this example, we visuliaze the traversability map of a scene. We use this map to build an internal traversability graph for each floor so that we can compute the shortest path between two locations, and place robots and objects at valid locations inside the scene. The code can be found here [examples/demo/trav_map_vis_example.py](https://github.com/StanfordVL/iGibson/blob/master/examples/trav_map_vis_example.py).
In this example, we visuliaze the traversability map of a scene. We use this map to build an internal traversability graph for each floor so that we can compute the shortest path between two locations, and place robots and objects at valid locations inside the scene. The code can be found here: [examples/demo/trav_map_vis_example.py](https://github.com/StanfordVL/iGibson/blob/master/examples/trav_map_vis_example.py).
The traversability map of the scene `Rs` looks like this:
![trav_map_vis](images/trav_map_vis.png)

View File

@ -1,12 +1,15 @@
# scene
scene: building
model_id: Rs
is_interactive: false
build_graph: true
load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 3
# robot
robot: Fetch
is_discrete: false
wheel_velocity: 1.0
torso_lift_velocity: 1.0
arm_velocity: 1.0
@ -16,7 +19,6 @@ task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: false
additional_states_dim: 4
# reward

View File

@ -1,12 +1,15 @@
# scene
scene: building
model_id: Rs
is_interactive: false
build_graph: true
load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 3
# robot
robot: JR2_Kinova
is_discrete: false
wheel_velocity: 0.3
arm_velocity: 1.0
@ -15,7 +18,6 @@ task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: false
additional_states_dim: 4
# reward

View File

@ -1,12 +1,15 @@
# scene
scene: building
model_id: Rs
is_interactive: false
build_graph: true
load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 2
# robot
robot: Locobot
is_discrete: false
linear_velocity: 0.5
angular_velocity: 1.5707963267948966
@ -15,7 +18,6 @@ task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: false
additional_states_dim: 4
# reward

View File

@ -1,13 +1,16 @@
# scene
scene: building
model_id: Rs
is_interactive: false
build_graph: true
load_texture: true
pybullet_load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 2
# robot
robot: Turtlebot
is_discrete: false
velocity: 1.0
# task, observation and action
@ -15,7 +18,6 @@ task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: false
additional_states_dim: 4
# reward

View File

@ -0,0 +1,70 @@
# scene
scene: building
model_id: Placida
is_interactive: true
build_graph: true
load_texture: true
pybullet_load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 2
# robot
robot: Turtlebot
is_discrete: false
velocity: 1.0
# task, observation and action
task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
additional_states_dim: 4
# reward
reward_type: geodesic
success_reward: 10.0
slack_reward: -0.01
potential_reward_weight: 1.0
collision_reward_weight: -0.1
collision_ignore_link_a_ids: [1, 2, 3, 4] # ignore collisions with these robot links
# discount factor
discount_factor: 0.99
# termination condition
dist_tol: 0.36 # body width
max_step: 500
max_collisions_allowed: 500
goal_format: polar
# sensor spec
output: [sensor, rgb, depth, scan]
# image
# ASUS Xtion PRO LIVE
# https://www.asus.com/us/3D-Sensor/Xtion_PRO_LIVE
fisheye: false
image_width: 640
image_height: 480
vertical_fov: 45
# depth
depth_low: 0.8
depth_high: 3.5
# scan
# Hokuyo URG-04LX-UG01
# https://www.hokuyo-aut.jp/search/single.php?serial=166
# n_horizontal_rays is originally 683, sub-sampled 1/3
n_horizontal_rays: 228
n_vertical_beams: 1
laser_linear_range: 5.6
laser_angular_range: 240.0
min_laser_dist: 0.05
laser_link_name: scan_link
# sensor noise
depth_noise_rate: 0.0
scan_noise_rate: 0.0
# visual objects
visual_object_at_initial_target_pos: true
target_visual_object_visible_to_agent: false

View File

@ -1,12 +1,15 @@
# scene
scene: building
model_id: Rs
is_interactive: false
build_graph: true
load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 2
# robot
robot: Turtlebot
is_discrete: false
velocity: 1.0
# task, observation and action
@ -14,7 +17,6 @@ task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: false
additional_states_dim: 4
# reward

View File

@ -1,12 +1,15 @@
# scene
scene: building
model_id: Rs
is_interactive: false
build_graph: true
load_texture: true
trav_map_resolution: 0.1
trav_map_erosion: 2
# robot
robot: Turtlebot
is_discrete: true
velocity: 1.0
# task, observation and action
@ -14,7 +17,6 @@ task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: True
additional_states_dim: 4
# reward

View File

@ -3,6 +3,7 @@ scene: stadium
# robot
robot: Turtlebot
is_discrete: false
velocity: 1.0
# task, observation and action
@ -10,7 +11,6 @@ task: pointgoal # pointgoal|objectgoal|areagoal|reaching
target_dist_min: 1.0
target_dist_max: 10.0
initial_pos_z_offset: 0.1
is_discrete: false
additional_states_dim: 4
# reward

View File

@ -0,0 +1,27 @@
from gibson2.envs.locomotor_env import NavigateRandomEnvSim2Real
from time import time
import numpy as np
from time import time
import gibson2
import os
from gibson2.core.render.profiler import Profiler
def main():
config_filename = os.path.join(os.path.dirname(gibson2.__file__),
'../examples/configs/turtlebot_demo.yaml')
nav_env = NavigateRandomEnvSim2Real(config_file=config_filename,
mode='gui',
track='interactive')
for j in range(10):
nav_env.reset()
for i in range(100):
with Profiler('Env action step'):
action = nav_env.action_space.sample()
state, reward, done, info = nav_env.step(action)
if done:
print("Episode finished after {} timesteps".format(i + 1))
break
if __name__ == "__main__":
main()

View File

@ -1,4 +1,4 @@
from gibson2.envs.locomotor_env import NavigateEnv, NavigateRandomEnv
from gibson2.envs.locomotor_env import NavigateRandomEnv
from time import time
import numpy as np
from time import time

View File

@ -0,0 +1,25 @@
from gibson2.envs.locomotor_env import NavigateRandomEnv
from time import time
import numpy as np
from time import time
import gibson2
import os
from gibson2.core.render.profiler import Profiler
def main():
config_filename = os.path.join(os.path.dirname(gibson2.__file__),
'../examples/configs/turtlebot_interactive_demo.yaml')
nav_env = NavigateRandomEnv(config_file=config_filename, mode='gui')
for j in range(10):
nav_env.reset()
for i in range(100):
with Profiler('Env action step'):
action = nav_env.action_space.sample()
state, reward, done, info = nav_env.step(action)
if done:
print("Episode finished after {} timesteps".format(i + 1))
break
if __name__ == "__main__":
main()

View File

@ -76,8 +76,9 @@ class BaseEnv(gym.Env):
waypoint_resolution=self.config.get('waypoint_resolution', 0.2),
num_waypoints=self.config.get('num_waypoints', 10),
build_graph=self.config.get('build_graph', False),
trav_map_resolution=self.config.get('trav_map_resolution', 0.1),
trav_map_erosion=self.config.get('trav_map_erosion', 2),
should_load_replaced_objects=self.config.get('should_load_replaced_objects', False),
is_interactive=self.config.get('is_interactive', False),
pybullet_load_texture=self.config.get('pybullet_load_texture', False),
)
self.simulator.import_scene(scene, load_texture=self.config.get('load_texture', True))

View File

@ -769,8 +769,14 @@ class NavigateRandomEnv(NavigateEnv):
Reset episode
"""
self.floor_num = self.scene.get_random_floor()
# reset "virtual floor" to the correct height
self.scene.reset_floor(floor=self.floor_num, additional_elevation=0.02)
if self.scene.is_interactive:
# reset scene objects
self.scene.reset_scene_objects()
else:
# reset "virtual floor" to the correct height
self.scene.reset_floor(floor=self.floor_num, additional_elevation=0.02)
state = super(NavigateRandomEnv, self).reset()
return state
@ -803,15 +809,15 @@ class NavigateRandomEnvSim2Real(NavigateRandomEnv):
if self.track == 'interactive':
self.interactive_objects_num_dups = 2
self.interactive_objects = self.load_interactive_objects()
# interactive objects pybullet id starts from 3
self.collision_ignore_body_b_ids |= set(range(3, 3 + len(self.interactive_objects)))
# does not penalize collision with these interactive objects
self.collision_ignore_body_b_ids |= set([obj.body_id for obj in self.interactive_objects])
elif self.track == 'dynamic':
self.num_dynamic_objects = 1
self.dynamic_objects = []
self.dynamic_objects_last_actions = []
for _ in range(self.num_dynamic_objects):
robot = Turtlebot(self.config)
self.simulator.import_robot(robot, class_id=1)
self.simulator.import_robot(robot)
self.dynamic_objects.append(robot)
self.dynamic_objects_last_actions.append(robot.action_space.sample())
@ -835,7 +841,7 @@ class NavigateRandomEnvSim2Real(NavigateRandomEnv):
for _ in range(self.interactive_objects_num_dups):
for urdf_model in interactive_objects_path:
obj = InteractiveObj(os.path.join(gibson2.assets_path, 'models/sample_urdfs', urdf_model))
self.simulator.import_object(obj, class_id=2)
self.simulator.import_object(obj)
interactive_objects.append(obj)
return interactive_objects
@ -903,8 +909,13 @@ class NavigateRandomEnvSim2Real(NavigateRandomEnv):
Reset episode
"""
self.floor_num = self.scene.get_random_floor()
# reset "virtual floor" to the correct height
self.scene.reset_floor(floor=self.floor_num, additional_elevation=0.02)
if self.scene.is_interactive:
# reset scene objects
self.scene.reset_scene_objects()
else:
# reset "virtual floor" to the correct height
self.scene.reset_floor(floor=self.floor_num, additional_elevation=0.02)
if self.track == 'interactive':
self.reset_interactive_objects()