update download instructions
This commit is contained in:
parent
807b50ee78
commit
9a4e1f0415
|
@ -1 +1 @@
|
|||
gibson/assets
|
||||
gibson/assets/dataset
|
||||
|
|
|
@ -28,8 +28,8 @@ RUN conda create -y -n py35 python=3.5
|
|||
|
||||
ENV PATH /miniconda/envs/py35/bin:$PATH
|
||||
|
||||
RUN pip install http://download.pytorch.org/whl/cu90/torch-0.3.0.post4-cp35-cp35m-linux_x86_64.whl
|
||||
RUN pip install torchvision
|
||||
RUN pip install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp35-cp35m-linux_x86_64.whl
|
||||
RUN pip install torchvision==0.2.0
|
||||
RUN pip install tensorflow==1.3
|
||||
|
||||
WORKDIR /root
|
||||
|
|
|
@ -84,8 +84,8 @@ RUN conda create -y -n py35 python=3.5
|
|||
|
||||
ENV PATH /miniconda/envs/py35/bin:$PATH
|
||||
|
||||
RUN pip install http://download.pytorch.org/whl/cu90/torch-0.3.0.post4-cp35-cp35m-linux_x86_64.whl
|
||||
RUN pip install torchvision
|
||||
RUN pip install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp35-cp35m-linux_x86_64.whl
|
||||
RUN pip install torchvision==0.2.0
|
||||
RUN pip install tensorflow==1.3
|
||||
|
||||
WORKDIR /root
|
||||
|
|
28
README.md
28
README.md
|
@ -99,13 +99,16 @@ You can either 1. build your own docker image or 2. pull from our docker image.
|
|||
1. Build your own docker image (recommended)
|
||||
```bash
|
||||
git clone https://github.com/StanfordVL/GibsonEnv.git
|
||||
cd GibsonEnv
|
||||
wget https://storage.googleapis.com/gibsonassets/assets.tar.gz -P gibson
|
||||
./build.sh decompress_data
|
||||
cd GibsonEnv/gibson
|
||||
wget https://storage.googleapis.com/gibsonassets/assets_core.tar.gz
|
||||
tar -zxf assets_core.tar.gz
|
||||
cd assets
|
||||
wget https://storage.googleapis.com/gibsonassets/dataset.tar.gz
|
||||
tar -zxf dataset.tar.gz
|
||||
### the commands above downloads assets data file and decpmpress it into gibson/assets folder
|
||||
docker build . -t gibson ### finish building inside docker
|
||||
```
|
||||
If the installation is successful, you should be able to run `docker run --runtime=nvidia -ti --rm -e DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v <host path to assets folder>:/root/mount/gibson/gibson/assets gibson` to create a container.
|
||||
If the installation is successful, you should be able to run `docker run --runtime=nvidia -ti --rm -e DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v <host path to dataset folder>:/root/mount/gibson/gibson/assets/dataset gibson` to create a container.
|
||||
|
||||
|
||||
2. Or pull from our docker image
|
||||
|
@ -121,7 +124,7 @@ Instructions to run gibson on a headless server:
|
|||
1. Install nvidia-docker2 dependencies following the starter guide.
|
||||
2. Use `openssl req -new -x509 -days 365 -nodes -out self.pem -keyout self.pem` create `self.pem` file
|
||||
3. `docker build -f Dockerfile_server -t gibson_server .` use the `Dockerfile_server` to build a new docker image that support virtualgl and turbovnc
|
||||
4. `docker run --runtime=nvidia -ti --rm -e DISPLAY -v /tmp/.X11-unix/X0:/tmp/.X11-unix/X0 -v <host path to assets folder>:/root/mount/gibson/gibson/assets -p 5901:5901 gibson_server`
|
||||
4. `docker run --runtime=nvidia -ti --rm -e DISPLAY -v /tmp/.X11-unix/X0:/tmp/.X11-unix/X0 -v <host path to dataset folder>:/root/mount/gibson/gibson/assets/dataset -p 5901:5901 gibson_server`
|
||||
in docker terminal, start `/opt/websockify/run 5901 --web=/opt/noVNC --wrap-mode=ignore -- vncserver :1 -securitytypes otp -otp -noxstartup` in background, potentially with `tmux`
|
||||
5. Run gibson with `DISPLAY=:1 vglrun python <gibson example or training>`
|
||||
6. Visit your `host:5901` and type in one time password to see the GUI.
|
||||
|
@ -146,17 +149,20 @@ Install required deep learning libraries: Using python3.5 is recommended. You ca
|
|||
conda create -n py35 python=3.5 anaconda
|
||||
source activate py35 # the rest of the steps needs to be performed in the conda environment
|
||||
conda install -c conda-forge opencv
|
||||
pip install http://download.pytorch.org/whl/cu90/torch-0.3.0.post4-cp35-cp35m-linux_x86_64.whl
|
||||
pip install torchvision==0.1.9
|
||||
pip install http://download.pytorch.org/whl/cu90/torch-0.3.1-cp35-cp35m-linux_x86_64.whl
|
||||
pip install torchvision==0.2.0
|
||||
pip install tensorflow==1.3
|
||||
```
|
||||
Clone the repository, download data and build
|
||||
```bash
|
||||
git clone https://github.com/StanfordVL/GibsonEnv.git
|
||||
cd GibsonEnv
|
||||
wget https://storage.googleapis.com/gibsonassets/assets.tar.gz -P gibson
|
||||
./build.sh decompress_data ### decompress data
|
||||
#the commands above downloads assets data file and decpmpress it into gibson/assets folder
|
||||
cd GibsonEnv/gibson
|
||||
wget https://storage.googleapis.com/gibsonassets/assets_core.tar.gz
|
||||
tar -zxf assets_core.tar.gz
|
||||
cd assets
|
||||
wget https://storage.googleapis.com/gibsonassets/dataset.tar.gz
|
||||
tar -zxf dataset.tar.gz
|
||||
#### the commands above downloads assets data file and decpmpress it into gibson/assets folder
|
||||
./build.sh build_local ### build C++ and CUDA files
|
||||
pip install -e . ### Install python libraries
|
||||
```
|
||||
|
|
|
@ -1 +1 @@
|
|||
assets.tar.gz
|
||||
*.tar.gz
|
||||
|
|
Loading…
Reference in New Issue